AD-A009 148

TAKEOFF AND LANDING ANALYSIS COMPUTER
PROGRAM (TOLA). PART IV. PROGRAMMER!'S
MANUAL

Fay O. Young, et al

Air Force Flight Dynamics Laboratory
Wright-Patterson Air Force Base, Ohio

January 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

RECESSION fur

3]
1]

White S<riinn er,
Beff So.n0

UHARFOLNCED ‘
SUSTIFLCATION ...coooee

¢

|

BISTRIBUTION

This report has been reviewed and cleared for open publication and/or public re-
lease by the appropriate Office of Information (OI) in accordance with AFR 190-17
and DOD 5230.9. There is no objection to unlimited distribution of this report to
the public at iarge, or by DDC to the National Technical Information Service (NTIS)

This technical! report has been reviewed and is approved for publication,

FOR THE COMMANDER:

floltaccl o A«
PHILIP P. ANTONATOS

Chifff, Flight Mechanics Division
Air Force Flight Dynamics Laboratory

Cogies of this report should not be returned unless return is required by security
considerations, contractual obligations, ox notice on a specific document.

AIR FORCE/56780/23 Aprll 1975

When Government drawi.gs,

other person or corporation,

- 200

NOTICE

specifications,

speciiications,

or other data are used for any purpose
st aother than in connection with a definitely related Government procurement operation,
TN | the United States Government thereby incurs no responsibility nor any obligation
whatscever; and the fact that the government may have formulated,
any way supplied the said drawings,
regarded by implication or otherwise as in any manner licensing the holder or any
or conveying any rights or permission to manufacture,
use, or sell any patented invention that may in any way be related thereto.

furnished, or in
or other data, is not to be

T A T ™ e S, T ST SRR AT ey Tt e v rmmrmmm ey
-
UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Daia Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFCEAD INSTRUCTIONS
T. REPORT NUMBER 2. GOVT ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER
AFFDL-~TR-71-155, Part IV AI)-—A(_ (”J g'
4 TITLE 7ant Subtitle) TYPE OF REPORT A PER?OU covt RED

Takeoff and Landing Analysis Computer Program(Tola) Final report
Pt.IV - Programmer's Manual

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S B. CONVRA_T OR GRANT NUMBER:s)

Fay 0. Young
John J. Dueweke

9 PERFGRMING ORGANIZATION NAME AND ADDRESS ‘0 PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS
Air Force Flight Dynamics Laboratory Proj 1431
Wright-Patterson AFB, Ohio 45433 Task 143109
11, CONTROLLING OFFICE NAME AND ADDRELS 12. REPORT DATE
Air Force Flight Dynamics Laboratory January 1975
Wright-Patterson AFB, Ohio 45433 '3-1"“"9“ OF PAGES
99
14 MONITORING AGENCY NAME & ADDRESS(if different from Controlling Ollice) 15, SECURITY CLASS. (nf this teport)
Unclassified
752 TECLASSIFICAT ON DOVWNGRAGING |
SCHEDULE
16. DISTRIBUTION STATEMENT (of rthis Report) PRt r—\e
o C
Approved for public release; distributior unlimited o R R N (=
I] l,[ll !
_ Lis-

17. BISTRIBUTiaN STAfE'MEVN.T“(:IA I—I;:;b‘a—;:cl ~ntered in Block 20, i dilterent from Report) o

18. SUPPLEMENTARY NOTES

PRICES SUBJECT T0 CHANGE D U= 25 U

19. KEY WORDS (Continue on reverse side if necessary and iden’ify by block number)

1 Takeoff and Landi..g Analysis 6. Takeoff Roll
2. Computer Program 7. Landing Gear Loads and Dynamics
3. Glide Slope 8. Vehicle Control

4. Flare
5. Landing Roll

20 ABSTRACTY 7Continue on r:verse side {f necessary and identily by block number)

A well-defined integration of the various aspects of the aircraft takeoff
and landing problem is presented in the form of a generalized computer program.
Total aircraft system performance is evaluated during the glide slope, flare,
landing roll, and takeoff. The flight dynamics of a generalized, rigid~body,
acrospace vehicle are formulated in six degrees of freedom. A flat, nonrotating
Earth is assumed. The independent equations of motion of up to five oleo-type
landing gears are also formulact~d. A control management formulation is devel-
oped to automatically adjust control variables to correct errors in the vehi-
cle's dynamic state. Stability in the small is used to maintain stability in
the large. The equations of motion are integrated using a generalized variable-
step Runge-Kutta technique. The formulation is programmed for the CDC CYBER 70
and 6000 series computers using the SCOPE 3.4 operating system. The entire
program is written in Fortran Extended.

DD ,75i%, 1473 =oiTion oF 1 NOV 65 15 0BSOLETE UNCLASSIFIED
Reproduced by

NAT'ONAL TECHNlCAL RITY CLASSIFICATION OF THIS PAGT (When Data Entered)

INFORMATION SERVICE '
US Department of Commerce
Springfield, VA, 22151 '

— mw ’

AFFDL-TR-71-155
PART IV

FOREWORD

Work described in this report was accomplished by the Flight Mechanics
Division of the Air Force Flight Dynamics Laboratory and the Digital

programming section, 4950th Te<t¢ Wing under Project 1431, "Flight Path
Analysis," Task 143109, "irajectory and Motion Anaiysis of ~light
Vehicles.”" The forruiation and interim documentation were completed

by Major Urban .i. D. Lynch. Programming was accomplished by Mr. Fay 0.
Young of the Digital Programming Section (ADDP), Computer Science Center
4950iLh Test Wing.

This report was prepared by Mr. John J. Dueweke of the High Speed
Aero Performance Branch (FXG), and Mr. Fay 0. Young, and combines the
applicable portions of FDL-TDR-64-1, Part I, Volume 1, with the interim
documentation. The overall report is divided into four parts:

Part . Capabilities of the Takeoff and Landing Analysis Computer

Program
Part II. Problem Formulation
Part III. User's Manual

Part IV. Programmer's Manual

This report was submitted by the authors in March 1972.

iii

AFFDL-TR-71-155
PART IV

ABSTRACT

A well-defined integration of the various aspects of the aircraft
takeoff and landing problem is presented in the form of a generalized
computer program. Total aircraft system performance is evaluated during

the glide slope, flare, landing roll and takeoff.

The flight dynamics of a generalized, rigid-body, aerospace vehicle
are formulated in six degrees of freedom. A flat, nonrotating Earth is
assumed. The independent equations of motion of up to five oleo-type

landing gears are also formulated.

A contro! management formulation is developed to automatically adjust
control variables to correct errors in the vehicle's dynamic state.

Stability in the small is used to maintain stability in the large.

The equations of motion are integrated using a generalized variahle-

step Runge-Kutta technique.

The formulation is pﬁbgrammed for the CDC CYBER 70 and 6000 series
computers using the SCOPE 3.4 operating system. The entire program
is written in Fortran Extended.

iv

AFFDL-TR-71-155

PART IV

SECTION
1
Il
I

v

TABLE OF CONTENTS

INTRODUCTION

COMPUTER AND SYSTEM REQUIREMENTS

PROGRAMMING CONCEPTS

-—

QUOUWNTHWN -

The Use of Common

Tables and Table Usage
Symbolic Input

Trajectory Printing Method
Tape Usage

Structure of Program
Program Organization

Deck Setup

Dat. Formnat

Table Format

FORTRA™" EXTENDED OVERLAY (0, 0)

SUBROUTINES

1. TOLA - Main Program

2. EXE - Executive Program

3. STGTSI, STGTST - Stage Testing Routines

4, INUPD, LNUPD, INPUZ, INTEG, UPDATE -
Interface Routines for Integration Routine

5. MIMIN - Integration Routine

6. LGDET - Routine to Restrict LG Variah'es in
Integration Routine

7. ASRCH, TDATA - Directory Search Routine

8. DEF - Heading and Page Eject Routine

9. STFL, STFLD, STOVAR, ARRAY - Storage and
Qutput Printing Routines

10. LINES - Lines Acccunting Routine

11. ASIN - Arc Sine Functién

12. ACOS - Arc Cosine Function

13. ATANZ - Arc Tangent Function

14. ERROR, EXERR - Error Routines

15. NDTLU - N-Dimensional Table Look-Up Routine

16. ATMS - Atmosphere Calculation Routine (1969)

17. INVR3 - Inverse of a Non-Singular 3X3 Matrix

18. MULT31 - A Matrix Multiplication Routine

19. TRNPOS - A 3X3 Matrix Transpose Routine

20. HIHO - N-Dimensional Table Call Routine

21. TLU - Two-Dimensional Table Look-Up Routine

22. TFFS1 - Engine Thrust and Throttle Setting

23. VPCS1 - Vehicle Physical Characteristics

24. SACS1 - Aerodynamic Forces and Moments

25. AERP1 - Aerodynamic Data Lookup Function

PAGE

n

—— ot
AWONTOH_BWWW W

—
0

AFFDL-TR-71-1585

PART 1V
TABLE OF CONTENTS (CONTD)

SECTIUN PAGE
26. AQUAD - A Quadratic Function 87

27. OPT! - Six-Degree-of-Freedom Trajectory
b Program Over a Flat Planet 103
= g ¢8. LGEARY - Landing Gear Calculations, Part I 106
SRR 2G. LGEA3C - Landing Gear Calculations, Part [I 117
30. SDFLGP - Printing of SDF & LG Variables 17
v FORTRAN EXTENDED OVERLAY (1, 0) 136
1. TOLANT - Main Program for Overlay 136
2. TFFS2 - Set Up Table Routine 137
3. READ - Input Routine 138
4. DSERCH - Directory Search Routine for Subscripts 141
5. TABRE - Table Dimension Subscript Routine 142
6. TSRCH - Table Subscript Search Routine 143
7. Routines Called by READ Subroutine 146
€. DIRODA - Input Directory (Part I) 146
9. DIRIOA - Input Directory (Part II) 146
10. DIRZDA - Input Directory (Part III) 146
VI FORTRAN EXTENDED OVERLAY (2, 0) 147
1. TOLAN2 - Main Program for Overlay 147
. 2. AUTS - Autopilot and Control System 148
: 3. FLARET - Autopilot Flare 148
LU 4. AUTPR1 - Autopilot Print Routine 164
. 5. THAUTS - Autopilot Throttle 165
' 6. ENGKEV - Autopilot Engine Reverse Logic 180
e 7. ENGFL - Autopilot Engine Failure Logic 180
S 8. CTENGL - Autopilot Commen Two-Engire Logic 180
o 9. CENGL - Autopilot Common Engine Logic 184
PY: 10. TFFS8 - Throttle Setting Search Routines 184
7 11. TFFS9 - Computation of Thrust as F (MN, TN) 184
S VII PLOT TAPE GENERATING PROGRAM (PLTSODF) 189

vi

AFFDL-TR-71-155
PART 1V

SECTION I
INTRODUCTION

In the design of an aircraft, the engineer is confronted with the
problem of takeoff and landing and the design of aircraft systems and
techniques to perform this function. The final evaluation of these
systems lies in the answer to the question: How does the aircraft and
its systems perform as & unit? The Takeoff and Landing Analysis (TOLA)
Computer Program is the resuit of an attempt to generalize the aircraft,
the main aircraft control systems, and the landing-takeoff situation

into a single comprehensive calculation to answer this question.

The TOLA simulation answers the above question in the form of a
well-defined integration of the various aspects of takeoff and landing.
In the equations of motion the assumption is made that the main aircraft
frame is rigid; however, the dynamic effects of up to five independent
landing gears are included in the equations. The position and velocity
of each strut and secondary piston are obtained by numerical integration
subject to position constraints (for example, the main strut must move
within the 1imits of the fully extended position and strut bottoming

position). The same form of solution applies to the aircraft itself.

AFFDL-TR-71-155
PART IV

SECTION II
COMPUTER AND SYSTEM REQUIREMENTS

The Takeoff and Landing Analysis Computer Program (TOLA) has been
written for use with the CDC CYBER 70 and 6000 series computers using the
SCOPE 3.4 operating system. The entire TOLA is written in Fortran
Extended.

1. CYBER 70 or 600C series computer

a. A CYBER 70 or 6000 series computer with 32K (decimal), or
larger core.

b. Six CDC tape transports.

c. Control Data Card Reader.

d. Contirol Data Printer.

e. 12 inch CALCEMP off-line plotter.

2. The CDC tape transports may be replaced by other equipment which
will simulate magnetic tapes such as disk storage, except for one tape
unit that may be used to generate a plot tape for the CALCOMP of7i-line

plotter.

AFFDL-TR-71-155
PART 1V

SECTION III
PROGRAMMING CONCEPTS

1. THE USE OF COMMON

Whenever possible, a variable is placed in the FORTRAN "COMMON" Area.

There are several reasons for this:

a. The communications between subroutines is simplified.

b. The structure of the directory is simplified. Since the number
of variables in COMMON is quite large, all COMMON cards are not
placed in each assembly/compilation. Instead, required "dummy"
cards are placed in each deck of source cards. This has in a

small manner reduced the number of COMMON cards in each deck.

2. TABLES AND TABLE USAGE

One of the usual required modifications of any program is the change
of table sizes. With this in mind, a COMMON block of locations has been
set aside and the required number of cells for each tabie is specified
with data (see TABRE for data preparation). This requires no reassembly
or recompilation unless the total number of cells required exceeds tne

COMMON block of 800 cells.

3. SYMBOLIC INPUT

Although the FORTRAN system itself has a system of input routines,
the program does the actual translation of the cards using special coded
routines. Input data may be read using a system of symbols which is
designed to give engineering meaning to the analyst. The symbols are

referenced to actual Tocations by the use of COMMON and subscripts.

AFFDL-TR-71-155
PART 1V

4. TRAJECTORY PRINTING METHOD
The printing of a trajectory may be divided into four categories.

a. Initial Printing - The printing of specific values at the

first stage and at each subsequent major stage.

b. Code Printing - The printing of codes which will identify

the variables which are to be cbtained in the coming time history print.

¢. Time History Printing - The printing of values specified at

the requested points of the trajectory.

d. Diagnostic Error Printing - The printing of errors detected

by the program.

A1l input data involved for a case is printed on the output page
preceding the computation of the first stage printout. Also, data read
in at stage times will be printed out between the stages of the trajectory

output.

Initial print is designed to print certain values which will be
constant during the trajectory and serves as a reminder of what values

have been used for these constants.

Code printing is performed once per major stage to identify the time

history.

The time history print is designed to print in a minimum space.

That is, if a certain variable is not desired as output, it is not printed

and other desired variables are moved in the print format accordingiy.

AFFDL-TR-71-155
PART 1V

The entire printing is controlled to print on a page 11 x 14 inches
and will print a maximum of 51 lines per page. Page ejection and lines

control are provided by the subroutines DEF and LINES.

5. TAPE USAGE

Tapes Equipment Usage

Tape 5 Disk or Tape Data Input

Tape 6 Disk or Tape Printed Output

Tape 13 Disk or Tape Data saved to be used to

generate a plot tape by
Plot program (PLTSDF)

Tape 16 Disk or Tape Used by the symbolic

Tape 31 Disk or Tape input routine to save
input data

Tape 7 Tape CALCOMP plot tape

The above describes the tape usage other than for the FORTRAN system,
A1l modification of tapes required may be made with control cards placed

in front of the program before submitting to the computer.

6. STRUCTURE OF PROGRAM
Due to core storage limitations (32K), it was necessary to use the

Overlay feature. The tollowing is the structure of the program:

a. OVERLAY {(0,0) (FOR. LEXT)
TOLA STFL TRNPOS
FXE STFLD HIHO
INUPD STOVAR TLU
LNUPD ARRAY TFFS1
5

AFFDL-TR-71-155
PART IV .

INPUZ LINES

INTEG ASIN

UPDAT ACOS VPCS1
MIMIN ATAN2 SACSL
LGDET IZRROR ALRO1
STGTSI LXERR AQUAD
STGTST NDPTLU orT1
TDATA ATHS LGFAR]
INVR3 LGEA3C
ASRCH MULT31 SDFLGP
DEF
|
b. OVERLAY (1,0) (FOR EXT)
TOLAN1 TSRCH
TFFS2 DSERCH
READ PACKRR
DIPLAC RITE
TABRE DIRODA
READA DIRIDA
STORE DIR2Z2DA
WKCARD

AFFDL-TR-71-155
FART IV

c. OVERLAY (2, 0) (FOR EXT)

TOLAN2 ENGREV
AUTS ENGFL
FLARE1 CENGL
AUTFR1 CTENGL
THAUTS TFFS8
TFFS9

7. PROGRAM ORGANIZATION
The TOLA Computer Program is written in FORTRAN Extended. The

program is segmented and takes advantage of the FORTRAN overlay features.

This section attempts to descrfbe the overall organization of the

program from the viewpoints of control cards, tape usage, deck set-up,

and organization.

The program is broken up into three overlays as follows:
a. Overlay (0, 0). Contains all system routines, main, executive,

integration, computation of the equations of motion, and printing.

e il ot deb il

e

AFFDL-TR-71-155
PART 1V

b. Overlay (1, 0). Set up tables, input routines, and
input directory.

c. Overlay (2, 0). All routines of the Autopilot.

Plotting tapes are generated by a separate program for plotting on
the Cal Comp plotter.

a. Stbrage Reference. All variables requiring arrays have been
arranged in the standard FORTRAN conveﬁtion; for example, an array Ai is
stored in increasing storage locations for increasing i. Matrices are
stored columnwise.

b. Integers. All integers are assumed to be in a 60-bit word,
right-justified.

c. Qéﬁﬂéﬂ; In order to decrease the length and time required in
calling sequences, liberal use of labeled C@MM@N has been made. For the
actual variable and their arrangement in CPMMIN, the user is referred
to the program listing.

d. Variable Names. Because any variable may be referred to by

FORTRAN, all integer variable names begin with the leading letters I, J,
K, Ly M, or N. This does not mean that all noninteger variable names
begin witﬁ letters other than I, J, K, L, M, or N. They may, in some

subprogram, be declared integer or real.

8. DECK SETUP
a. Running the TOLA Program requires a particular deck setup. The

deck structure is presented as a guide only in determining this secup.

AFFDL-TR-71-155
PART IV

b. CONTROL CARDS (CDC CYBER 70 or 6000 Series, SCOPE 3.4). All

control cards are left justified in column 1. The end of record is a . g
7, 8, 9 punched in column 1 and on erd of job card is a 6, 7, 8, 9 punch |
in column 1. In the control card examples an exd of record and an end of
job will be used in place of the cards.
(1) The following control cards will execute the TOLA Computer
Programvfrom an UPDATE tape and not print a listing of TOLA.
Job Card
LABEL, OLDPL, R, L = TOLACF, VSN = tape No. RING 6UT
UPDATE, F.
FIN, I = COMPILE, L = 0.
RETURN, OLDPL.
LDSET, PRESET = ZERO.
LOAD, LGe.
NeGe.
TOLA.
End of Record
Changes to TOLACP if any in UPDATE format
End of Record
Data Cards
End of job.

If a listing is desired, omit the parameter L = O on the FTN control

card.

AFFDL-TR-71-155
PART IV

(2) The following control cards will generate a new UPDATE tape, an
absolute file on tape, and list the TOLA Program.
Job Card
LABEL, OLDPL, R, L

1

TOLACP, VSN = tape No. RING 6UT

[}
1]

LABEL, NEWPL, W, L = TOLACP, VSN = tape No. RING IN
UPDATE, N, F.
FTN, I = COMPILE.
RETURN, OLDPL.
UNLOAD, NEWPL.
LABEL, TOLA, W, L = TOLACPABS, VSN = tape No. RING IN
LDSET, PRESET = ZERG.
LOAD, LGO.
NOGO.
TOLA.
End of record
Changes to TOLA if any in UPDATE format
End of Record
Data cards
End of job
(3) The following control cards will execute from an absolute file
on “ape. TOLA is an absolute file on a tape.
Job card
LABEL, TOLA, R, L = TOLACPABS, VSN = tape No. RING OUT
TOLA.
End of record

Data cards

End of job

10

AFFDL-TR-71-155
PART IV

(4) If it is desired to save data on tape for CALCOMP plotting,
include the following control card with the LABEL cards:
LABEL, TAPE 13, W, L = TOLADATA, VSN = tape No. RING IN
(5) The following control cards will generate a new updated program
on permanent file (PF), generate on absolute file of TOLA on PF, and
execute TOLA.
Job Card
LABEL, OLDPL, R, L = TOLACP, VSN = tape No. RING 6UT
REQUEST, NEWPL, *PF.
UPDATE, N, F.
RETURN, OLDPL.
CATALOG, NEWPL, TOLACP, RP = 999, CY =1, ID = Prob No.
RETURN, NEWPL.
F TN, T =COMPILE, L =0
REQUEST, TOLAP, *PF.
LDSET, PRESET = ZER@.
LBAD, LGO.
NOGO.
TOLA.
CATALOG, TOLAP, TQLACP, RP = 999, CY = 2, ID = Prob No.
End of record
Changes to TOLA if any in UPDATE format

End of record

Data cards

End of job

11

AFFDL-TR-71-155
PART IV

(6) To execute from a permanent file, use the following control
cards:
Job Card
ATTACH, TOLA, TOLACP, CY = 2, ID = XXXXXX.
TOLA.
End of record
DATA cards
End of job
(?7) To execute from a permanent file, and generate a plot tape
for the CALCOMP plotter on TAPE 7, use the following control cards. The
plot tape generating program (PLTSDF) is located on PF: pPLTSDF, CY = 1.

Job Card

ATTACH, TOLA, TOLACP, CY = 2, ID = XXXXXX.
TOLA.

RETURN, TOLA

REQUEST, TAPE 7, MT, HI, N, VSN = Tape No. Ring IN
ATTACH, PLTSDF, PLTSDF, CY = 1, ID = XXXXXX.
PLTSDF.

End of record

Data cards for TOLA

End of record

Data cards for PLTSDF

End of job

12

AFFDL-TR-71-155
PART 1V

9. DATA FORMAT

Card Format - The program input routine (READ) expects the following

format.
Card Columns - {1 - GI 718-10] N 12 - 66] 67 - 72| 73 - 80
Field 1 I1 I11 IV) VI VIII

Card Field I - Contains the symbolic name of the variable which data

contained in Field V begins lo;ding. Example: Card Column |1 12
7D -1.23
SIG7D 90,
13

-

AFFDL-TR-71-155
PART 1V

Card Field II Not Used

Card Field III - Contains the words DEC, PCT, BCD, TRA, INT, or is
blank depending on the type of data to be loaded. The word ACT indicates
that the data is to be interpretéd as octal numbers. The word BCD
specifies that N binary coded decimal words (N punched in column 12)
beginning in column 13 are to be loaded. The word TRA denotes to the
input routine that all data has been read and to return control to the
calling program. The word DEC and blank are equivalent and specify

that data loaded is decimal data.

#CT Example
Card Column 1 8 12
NSMAIN [OCY 17
BCD Example
Card Column 1 8 12
REM BCD 3SDF2-GEAR-MOD

The 3 in Column 12 specifies 3 words where each word is considered to
be 6 characters including blanks. The largest number of 6-character
words that can be Toaded from one card is 9. The analysts should be
very careful to see that the BCD information does not get punched into

Field VI. This will cause an input error.

DEC Exampie
Card Column 1 , 8 12
VTABO1 DEC 2,0.,1.67,20000.,1.67

Note that the first character in Column 12 is an integer; the input
routine will load only one integer per DEC card, and that has tc be the

first number punched in Field V.

VTABO1 DEC 2.,0.,1.67,20000.,1.67

14

AFFDL~TR-71-155
PART IV

If the above card is punched, the two will now be loaded into the machine
as a binary floating point number. The other numbers will be 1oaded

the saime, with the decimal point assumed right-justified.

If anything other than @CT, BCD, INT, TRA, or blank appears in

Field Il then the word DEC is assumed.

INT Example

Card Column 1 12
1P INT 1
1P 1,
|IP INT 1,1,1,1

When the word INT is used it is assumed that all numbers on the card
will be loaded as integers. If only one integer is punched per card the
INT may be punched or omitted.

Card Field IV-Not Used
Card Field V

The actual input data to the program is punched in tha Field V.
DEC, INT and @CT numbers must always be left-adjusted; that is, it
must always start in column 12 on thé input card. Al1 numbers are
separated by a "comma" and the field terminates with the first blank.
BCD information begins in Column 13 and the maximum number of 6-character
words per card is nine. Note that since Field V ends with the first

blank, the user may punch any comments in the remainder of the field.

Card Field V]
This field specifies the initial subscript of the data in Field V.
If this field is blank, an initial subscript of 1 is impiied. The

subscript may appear anywhere within the field.

15

AFFDL-TR-71-155

PART 1V

Example

Card Column 1 12 67
PZERD 30470.4,41538,24,41538.24 1 (or blank)
PZERQ 2538.24,42538.24 4

In the example above, the number 30470.4 is loaded into the first cell
of the array PZER@. On the second card, 42538.24 is loaded inte the fourth
cell of the array. The one and four punched in Field VI indicate the

subscript for the array PLiRp.

Card Field VII

Not used as far as the input routine is concerned. This may be used

as a sequence number for the card.

10. TABLE FORMAT
The various types of tables used by the program may be classed as

follows:

One Dimensional Tables

Example 1: NTIRES noefli),i=1,2,..., NSTRUT
Card Column 1 12

NSTRUT 5

NTIRES la.,6.,6..6.,6.

INSTRUT= Fixed point number which is the number of struts on the aircraft.
For example, the number of tires on strut 2 is 6; i.e., n, = f(2) = 6.
i = independent variable values

n; = Corresponding dependent variable values

Example 2: Aerodynamic Data
Card Column 1 12
INDAO1 1
ATABO1 .0065,.00748
16

AFFDL-TR-71-155
PART 1V

INDAOT #1 designates that there are data in ATABOl. The first data point
is for full ground effect; the second data point is for no ground effect

in all aerodynamic tables.

Iwo_Dimensional Table

Example: VTABO1 Xoq-= f(m)
Card Column 1 12 cc
VTABO1 N’Ml’XCG1’Mz’xCGZ""’MN'XCGN

N = Fixed point number equal to 2 times the number of independent variables.
For a 20-point table, N would equal 40. The total number of machine

cells required for this table is 41.

Mi = Independent variable values

X = Corresponding dependent variable values

CGi

N - Dimensicnal Table

Example: T F(N,MN)
Card Column 1 12
ITIOW NN
IT10X NMN
TTAB10 NI’NZ'N3”"’NNN
TTAB]O MN] ,MNZ ’MN3, v e ’MNNMN
TTAB‘O TN] lMN'l ITNZ ’MN] PR ’TNNN 'MNI
TTAB10 TN]’MNZ'TNZ’MNZ""’TNNN’MNZ
TTAB10 Tovr oMo Tovz M < <« T Manmn

NN and NMN are fixed point numbers of independent variables. TN]. "N]""'
T"NN' "NNMN are values of independent variables. The table subscripts
would apply to the N-dimensional table as well as the two dimensional. The
total number of machine cells required for an N-dimensional table equal

NN * NMN + NN + NMN,

17

L

AFFDL-TR-71-155
PART 1V

Examples:
C=F(X, Y)
Machine cells required

C=F(\, VY, 2)

Machine cells required

NX = 2 = points for X

NY = 2 = points for Y
2x2+2+2=8cells

NX = 20 = points for X

NY = 10 = points for Y

NZ = 15 = points Tor Z

20 X 10 X 15 + 20 + 10 + 15 = 3045 cells

18

AFFDL-TR-71-155
PART IV

SECTION IV
FORTRAN EXTENDED OVERLAY (0,0)

1. TOLA - MAIN PROGRAM
a. Purpose - Initializes parameters in the read routine through

COMMON, initializes table cata, and parameters in storage routines, and

calls EXE.
b. Usage - Calls the executive routine (EXE) for each case.

2. EXE - EXECUTIVE ROUTINE

a. Purpose - To zero all variables that may be read in as input,
initialize subprograms, and set nominal values. Read input, do all the
proper initialization, set up tables dimersions, check for staging,

printing, etc.

b. Usage - The executive routine is the controlling program. When

a case is completed, a return is made to TOLA.

3. STGTSI, STGTST - STAGE TESTING ROUTINES
a. Purpose - To test the possiblity of staging on any of up to four

increasing and four decreasing variables.

b. Method - Given the four increasing variable BCD names (in arrcy

AINCRS) and the four decreasing variable BCD names (in array DECRCZS) the

routine first searches the directory for their location (routine STGTSI).

19

AFFDL-TR-71-15%
PART 1V

FLOW DIAGRAM — MAIN FTZOGRAM (TOLA)

REWIND 13

J

INITIALIZE RE’LD“—-]

ROUTINE CALL TDATA

y8C = - | CALL STFLC
INXQ =0 1

—

CALL
EXE.

60 (0
—1 NEXT
CASE

A" el I

AFFDL-TR-71-155

PART 1V

FLOW DIAGRAM — EXECUTIVE ROUTINE (EXE)

ZERO ALL VARIABLES

THAT MAY BE READ AS
INPUT.

INITIALIZE THE
FOLLOWING SUBPROGRAMS :
LGEAR {, TEFS1, VPCSY,

SACS 1, AND SDF (QPTH

i

SET:
SWT2 =.FALSE.
SWT3 =.TRUE.

SET
NOMINAL VALUES.
INITIALIZE AUTS :
SWT1 = .TRUE.
a, = 0. (DEG/SEC)
dd = 0. (RAD/SEC)
qd = 0. (RAD/SEC)

READ INPUT:
ICONTR =1
CALL OVERLAY (1,0)

&

INITILIZE STAGING:
CALL SYG TSI
EJECT PAGE
INDSKP = ©

H, = DELTS

Tywy < AMINER

YES

Trnr = AMINER

INTIALIZE
INTEGRATION |
CALL INPUZ

AUTS INTIALIZATION:

a zaQ
dn-y d

th-) = TIME
SET:. HT,HT1,HT2 = DELTS
SWT2 = . TRUE.

T = TIME
12y = TIME

TIMES =TIME -TIMSX

21

hg > AMAXH
' YES

INDARC =T

AFFOL-TR-71-155
PART IV

ACCOUNT FOR I3 LINES
PRINT ANALYST'S REMARKS

=0 o
INDVPC ’

#0

SET UP TABLES FOR
VPCS SUBPROGRAM:
ICONTR = 4

CALL QVERLAY (1,0)

O INDTFF)

#0
i

SET UP TABLES FOR

TFFS SUBPROGRAM '
ICONTR = 2

CALL VERLAY (1,0)

20 INDAER

{#o

SET UP TABLES FOR

SACS SUBPROGRAM :
ICONTR = 3

CALL $VZRLAY (1,0)

|
SET UP TABLES FOR
SOF PROGRAM:

ey

ICHNTR = §
CALL OVERLAY {1,0)
1

SET UP TABLES FOR

LGEAR SUBPROGRAM;
ICONTR=6

CALL OVERLAY (1,0)

[SKIPUP = .TRUE,
POST - DATA INITIALIZATION
FOR SUBPROGRAMS SOF,
LGEAR AND VPCS:
CALL VPCS2

CALL LGEAR2
CALL ¢PT2

UPDATE INTEFRATION VARIABLES:
: CALL $PT?
SAVE DATA ON TA-E FOR . LOTTING:
CALL SDFLGP
PRINT SDF AND SUBPROGRAM VARIABLES
CALL $PT6

INDAUT
#0

PRINT AUTOPILOT VARIABLES :

ICONTR = 2

CALL QVERLAY {2,0)

SKIPUP = FALSE.
END = FALSE.
TIMEA = DELTS 4+ T-1. E- 6(TIME TO CALL AUTS)
TIMEP =PRINT + T-1.E-6 (TIME TO PRINT)

22

AFFDL-TR-71-185
PART IV

A

FLOW NIAGRAM - EXECUTIVE ROUTINE (EXE)

TPD = T+DELTS

NO

DELTS 'qu; -T
Ho= DELTS
END = TRUE.

/

INTEGRATE ALL VARIABLES
CALL MIMIN (MIM)

(IF MIM #0, PRIMIN

HAS BEEN EXCEEDED.)

/
MIM
=0

¢0

|

SAVE DATA ON TAPE:
CALL SOFL6P

/
(1nD

\
(IND

FRINT AUTOPILOT
VARIABLES;

ICONTR = 2
CALL OVERLAY(2,0)

|

#0
INDAUT)

1 S

(DTIMEP = T PRINT-1.E-6

PRINT SDF &
SUBPROGRAM VARIABLES
@caLL oPTE

A

COMPUTE AUTOPILOT
VARIABLES :

ICONTR =2
CALL OVERLAY(2,0)

#0

INDAUT

YES

[Timea = T+0ELTS- 1. E- sj

23

AFFOL-TR-71-15%
PART IV

FLOW DIAGRAM-EXECUTIVE ROUTINE (EXE)
SAVE DATAON TAPE 6 > v
CALL SUFLGP

PRINT SDF AND
SUBPROGRAM VARIABLES.
CALL OPTE

=0
———-GNDAUT

#¢C

PRINT AUTS VARIABLES:
ICONTR= 2

CALL QVERLAY (2,0}

PRINT SDF AND

SUBPROGRAM VARIABLES:
CALL $PT6

TIMEP =Y + PRINT-1.E-6

T < TIMEA YES
NO } \ O
TIMEA = T + DELTS-1.E-& ‘ #0
20 /7 =0
r INDAUT STAGING IS REQUIRED.
INDSTG = G
PRINT AUTS VARIABLES' WRITE
ICONTR = 2 " STAGEON ____"
BLANK STAGE VARIABLES.
CALL GVERLAY {2,0)

AFFDL-TR-71-1585

PART 1V

INITIALIZE STAGING:
CALL STGTGI
T = TIME
Ho = DELTS
SKIPUP = TRUE.

NDEFS = 5 # NSTRUT

NDEFS = 3 # NSTRUT

INDSTF
T #o0
|
INDSTF = O
WRITE
"STYP - STAGE"
INDSKP = 1
EJECT PAGE
READ DATA:
ICONTR = 1
CALL GVERLAY (1,0)
INDSKP = O
— N\ =0
INDSTY
(Cwosty)
#0
o)t INDLG
INDSTY =0
EJECT PAGE
SWT3 = .FALSE.
‘o INDLG = - INDLG
= INDSTR SET UP TABLES, POST-
Z0 DATA INITIALIZATION,
AND COMPUTATION OF
INDSTR = © LANDING GEAR DYNAMICS:
TIMSX = T ICONTR = 6
- CALL OVERLAY(1,0)
NSTAGE = NSTAGE +1 CALL LGEAR2
CALL LGEARS

1
INDVPC

SUBTRACT NDEFS D.E.

FROM NO. OF D.E. INTEG.

CALL LNUPD (NDEFS)
SWT3=.TRUE.

(@ cALL sacsi
(@ INDAER = - INDAER
@ ICHNTR=3

(@ CALL OVERLAY (1,0)

INDAER
4

CALL VPCS%
INDVPC = - INDVPC

ICGNTR = 4
CALL $VERLAY (1,0)

CALL TFFS1
INDTFF = - INDTFF

® ICHNTR:=2

@ caLL $VERLAY(1,0)

INDTFF

25

AFFDL~TR-71-155

PART 1V

FLOW DIAGRAM - EXECUTIVE ROUTINE (EXE.)

ACCOUNT FOR 2 LINES
WRITE
"sTOP-TMAX"

ACCOUNT FOR 2 LINES
WRITE “STOP".
STSWCH = TRUE.

FINALIZE PLOT TAPE :
CALL LGEAGP

RETURN

END

26

AFFDL-TR-71-155
PART 1V

In routine STGTST, and when ISTAGE=0, the routine may then he used to

test for any of the increasing variables being greater than the values
in the STEST array (i.e., increasing variablei > STESTi). In like manner,

the decreasing variablei > STESTDi test is made for i = 1, 2, 3, 4.

Note that the testing stops at the first test to be satisfied. If a
test is satisfied for increasing variables, the routine places the BCD
name of the varible in STGVAR and the BCD word "INCR" in STGVAR-1. This
process is similar for decreasing variables, except that "DECR" is

placed in STGVAR-1.

Similarly, when ISTAGE # 0, the routine may be used to test for all
of the increasing variables being equal to the values in the STEST
array (i.e.,increasing variable, = STESTi). In like manner, the decreasing
variablei = STESTDi test is made for i = 1, 2, 3, 4. Note that in order

to puss the test the conditions must be met for all i.

c. Usage

(1) Initialization - The statement, CALL STGTSI

must be given. This statement must be given each time a new

set of variable names is to be tested.
(2) Testing Staging - To test if staging is indicated,

CALL STGTST (INDSTG)

0, No staging

The routine returns INDSTG

INDSTG = 1, staging indicated

27

Y P " P TRAr— Y v Lt wmTeE ottty omr 0" . A”‘

AFFDL-TR-71-155

FART IV
FLOW DIAGRAM (STGTSI)
YES . 4
) DECRES; = BLANK
ICQUNT = O _ |78)
KCOUNT = 0O NO
ie]
. IS VARIABLE IN DIRECTORY
ICONTR =8
[——j CONTRI » DECRES (I)
ves (AINCRS; = BLANK CALL OVERLAY (1,0)
NO LOCADE; = ICPNT2
/
IS VARIABLE IN DIRECTORY
ICONTR =8 " {ISVAR.INDIR.?
CONTR! = AINCRS (I) TEST ICONT3
CALL OVERLAY (i,0) YES
LOCAIN; = ICONT2 \
KCOUNY : KCQUNT ¢
» y
s NO /1S VAR.iN DIR.?
.. TEST JICONT 3
YES
\
ICQUNT 3 ICQUNT + |
1
NO
) izi+l
L YES
WRITE - 1
"ERROR. THE STAGE ; »"\
VARIABLE 1S SET UP ERROR STOP: {
.
NOT IN THE DIRECTORY CALL EXERR (0) RETURN
~~— LOOKING FOR
NEW CASE."

28

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (STGTST)

ICQUNT = 0

YES

STGVAR, = AINCRS,
STGVAR, = AINCR

INDSTG = 1
SW =, TRUE.

RETURN

N,

29

AFFDL-TR-71-155
PART 1V

KCHUNT =0

ISTAGE =0

FLOW DIAGRAM (STGTST)

YES

YES
i 2 xcoum>

NO

Bl —

YES

Y

STGVAR,

STGVAR,

DECRES
ADECR

KC‘M\IAI.l < STESTDD

30

J

INDSTG = O
SW=, FALSE.

éa_srunu

\

SN

AFFDL-TR-71-155
PART IV

4. INUPD, LNUPD, INPUZ, INTEG, UPDATE - INTERFACE ROUTINES FOR
INTEGRATION ROUTINE

a. Purpose - To serve as an interface between the integration routine
proper (MIMIN) and any routine requesting a variable to be integrated.

There are five logical functions which these routines perform.
For a particular call to one of these routines, one of these functions
will be enacted. The P array is the array of current derivative values
of the variables that are being integrated. The Y array is the array
of the current integrated variable values.

b. Usage - for each of the interface routines.

(1) CALL_INUPD(N,L)

The number of integratecd variables is increased by N. The subscripts
in the P and Y arrays for the values XDOT and X respectively are stored
in the array L.

(2) CALL LNUPD (M)

The number of integrated variables is decreased by M.
(3) CALL INPUZ
The P ar1 Y arrays are set to 0; the number of integrated variables

is set to 0.

31

P awe N

AFFDL-TR-71-155
PART IV

(4) CALL INTEG (K,XDOT)

The value of XDOT is stored in P(K).
(5) Call UPDAT (Jxi, JX2, XJ1, XJ2, XJ3, XJ4, XJbh)

JX1 = No. of variables (1 < JX1 < 5); JX2 = subscript of first

nd

variable (XJ1); 2 variable (XJ2) has subscript of JX2+1, etc.

When the logical variable SKIPUP (DIRCOM) is false, then the values
of the integrated variables are picked up from the proper places in the

Y array and put in XJ1, XJ2, etc.

When SKIPUP is true, the values of XJ1, XJ2, . . ., XJ5 are stored
inyY (JIX2), Y (IX2+1), . . ., Y (JIX2+IX1 - 1)

INUPD will terminate the case if more variables are requested to be
integrated than there is room for in the integration arrays; at the

present, this upper limit is 50 variables.

5. MIMIN - INTEGRATION ROUTINE

a. Purpose - To perform the calculation necessary to integrate
an arrgy of variables by the variable-step or fixed step Runge-Kutta
Method; to determine an estimate of the relative error, and from this
information, determine the new step size of integration in the

variable-step wode of integration.

32

AFFDL~TR-71-155
PART IV

FLOW DIAGRAMS, (INUPD, LNUPD, INPUZ, INTEG)

T

[NUM = NUM-MN

NUM+H £ 50
NO

S CALL DEF
B WRITE: NUMBER ¢F
INTEGRATION VARIABLES

‘ EXCEEDS MAX LIMIT 50
8 ‘ ENTRY
. INTEG
P (K) = XN I=0

NUM = NUM + §
L {I) = NUM
—

NO

i 2 N
YES

RETURN

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (UPDAT)

ENTRY
UPDAT_
I /

——— F
L/__S-K_I PUP

[viuxz+a)=xss |

[viuxa+3 = xJa |

[viuxz+21=x13 |

YYv(JX2+1)= xXJ2 !

=1

—

[xss=viuxz +4) |

l.____

[XJ4 =y (ux2 + 3)J

[o3 = vioxz+2) |

-
i

XJ2 = ¥ (X2 +1)]
L ol

~

IT(JXZ) = XJi J

=

l XJi = v{Jxz) J

RETURN

AFFDL-TR-71-155
PART IV

b. Usage - The entry to this routine is as follows:
CALL MIMIN (SN)
where N = statement number to which nonstandard return is made

from MIMIN.

c. Method - The variable step Runge-Kutta Method is calculated as
follows:

STEP 1

Fmaxn = |Yh|
Yo = FiX,Y,)
Yan = Ya + W2 Y,

Yan = F (X + h/2,¥,.)
Yo = Yn + W2 Y,

' An

Yp = F(X + nfz.van)

Yen = Ya + h Vg,

Yen = FUX #h, Y) .

Yon = Yn * ME{¥y +2 Y + 2 Vg + V)
STEP II

Yon = Yo + M4 Y,

Yon = F(X + b/, v,)

TE" = Yo + WA Yy

Yen = F X+ 04, ¥)

Yen = Yo + M2 Ve

Yen = FUX + h/2,¥)

Yin = Yo + W2 W6 (Y, + 2Vp, + 2 Vg, + V)

"!!l.n".!lllﬂlIllllll!lUllﬂllMﬂlllHlllﬂlﬂﬂll"-""'“""“'"'“ ‘ .

AFFDL-TR-71-1£5

PART IV
STEP 11
Yon = Yip + M4 Y
' Yoo = F(X + 3/4h,.an)
Y“" = Yy, + WA Y
F Y = F(X + 3/4n0, Y,)
: Yin = Yin ¥ P2 Yy,
?in = F(X+ h, ?in)
Yo = Yyp+ W2 - 1/6 (Vg + 2 Yg, + 2 Yy, + Vi)
wheren =1, 2, 3, . . ., NDEFEQ

NDEFEQ = No. of differential equations
Computation of Relative Error Eg * -,—',, (Y, - Yo !

Zy = Mox (Vg + | Y l) R = Mox [R, |€q|/Max (2, 1.)]

d. Input for Integration Routine

Symbol Used Math Symbol used Nominal
by READ Routine Notation by Integration Value Remarks
r IVARBH IVARBH 0 Use variable-step
=1, Use Fixed Step
TIME t X 0. Time to begin integ.
DELTS At DX .1 Time internal to int.
AMINER At pmin DXMIN 001 Minimum At
AMAXER At max DXMAX 10000. Maximum At
RELER1 R RELERI .00007 Rel. error tol. #1
Elery
RELER2 R RELER2 .000005 Rel. ervor tol. #2
ELero
N N No. of diff. egs.
Y; Y(N) Array of dep. -var.
P, P(N) Array of
PRTMIN PRTMIN Print Minimum
INDLG Landing gear indicator
INDSTE 1
STPPIT
SW
36

AFFDL-TR-71-155
PART IV

ACH = O,
X=X + AX

FLOW DIAGRAM (MIMIN)

X = Xo
h=MIN(Ih], 1 AX max 1)
vo' =Y, b=L2" N

UPDATE INTEGRATION
VARIABLES:

CALL QPT7

i=1,2,,N

CALL 9PT4

SET UP Y, = P, =F(X,Y,),

37

Po, = B ol =h2, o \N

Y, = Y°i + (h/2)-P°I,
i=),2,, N

X = Xo + h/2
CALL ¢PT7
CALL §PT4

INDSTE = 0

| F

SW=TRUE.
.AND.
h > STYPIT
F
S, = 2P, + Pol
Y, = Y°| +(h/2) Py,
i=1,2,---,N
CALL OPT7
CALL ¢PT4

-~

Bt i i - e 7

d

E AFFDL-TR-71-155
, PART 1V
r
i
3
L FLOW DIAGRAM (MIMIN)
S, = 2P + Ry
S, = 2P + §, Y, = Yo' + (h/4) p,
Y\ 2 Yo +hR, bo=1,2,-N
i. . 20 N CALL ¢PT?
S &yttt hrrygmeyad
X = Xyt CALL QPT4
CALL ¢PT?
CALL ¢PT4

INDSTE =0
—

5, % 2R + 5
= Yo, +(w2)e,

x =<

vpi z wroi + (h/G)(Pi+S‘). = 1,2, -, N

*: '2"2."'.N = x°+ h/2
CALL dPTT

$ » CALL §PT4 i
, INDSTE = 0

X =Xy + h/4

i Y°| + (h/a) Po',

o= '|2|"', N

F
)
Y ® Y°a +(h/2)(P‘ + S)e,
i = La,---,N
Y = Y“,l=|’2'...'~

CALL ¢pT7
CALL §PT4

38

AFFDL-TR-71-155
PART 1V

FLOW DIAGRAM (MIMIN)

S, =R
Yl = Y“ + “\/4, [’
i = 1,2,---N
X = Xgo + 30/4
CALL $PT7

j CALL ¢PT4

S, = 2R + 8
AR A LR
i 24,2, N
CALL §PTY

CALL $PTe

INDSTE=0

i

S, = 2R + 5,

Y, =Y +{v2)R,
i =42, ,N

X = Xo + h
CaLt déPTT7

CALL §PT4

!

R= 0,

Y, =Yy +(h2)P + 58,

ERR = (¥, - ¥,,)/15,

Z, = MAX (vm“‘.h',l)

R=MAX [m.—ii'lﬂl—— ,
MAX(Z;, 4.

i=1,2,--,N

RELER1 2 R

h=h/2

Y

p|=Y“ ' i = I.Z.‘“,N

39

(*9)

oS TR T

FLOW DIAGRAM (MIMIN)

Y,

max, = Zj o 17 b2,

INDLG = O

-

CHECK LANDING GEAR
CONSTRAINTS:
CALL LGDET

CALL OPTT
CALL $PT4

L.
\:—} — N\ F
h > PRTMIN

"EJ

ACH = 0.

{

l

ACH=ACH +h

cALL OPT?
CALL QPT4

hy = h

WRITE!

INTEG RTH
HT = £ X. XXXX"

R € RELER 2

40

o

AFFDL-TR-71-155
PART 1V

FLOW DIAGRAM (MIMIN)

H = Ax/ ||
K

=

K¢ = INTEGER OF

—8x_
Ax

"

K=K+1
Y°| =V,
CALL $PT?

CALL 3PT4

i=42,-N

CALL QPT?

CALL $PT4

21,2, N

CALL §PT7
CALL QPT4

X=X 4+ h/2

XK, 3= P
Y = Yo, + XK
121,2,-,N

Ly

LS INDSTE = O

ﬂ'

Y, =Y + (XK. . +

|$1
Z(XK"2+XK|'3 +hP|)/6
i=h2,--- N

CALL LGOET

CALL $PT?
CALL $PT4

WRITE. "HT = £ X, XXXX"

41

s T

AFFDL-TR-71-155
PART IV

6. LGDET - ROUTINE TO RESTRICT LG VARIABLES IN INTEGRATION ROUTINE
a. Purpose
When the statement CALL INTEG (K, XD) is executed, the derivative
XD is stored in an array P at location K of that array (i.e.,P(K)). The
integration is not processed until a complete pass has been made through

the program and all calls to INTEG have been made.

As the integration is performed the integrated variables are stored

in an array Y at the correspondir: location K as its derivative (i.e.,Y (K)).

When the statement CALL UPDAYT (N,K,X) is executed, the integrated
variable X is transmitted from the Y array (location Y (X)) to the location

X. The N designztes the number of variables to be transmitted.

Due to the requirements of the landing gear probiem some variables
that are intejrated are restricted to certain conditions. Therefore,
it was necessary to write the routine LGDET to restrict these variables
in the integration iroutine. As stated above these variables are stored

in the P and Y array in the integration routine.

b. Llinkage - CALL LGDET

42

AFFDL-TR-71-155

PART IV

I =71 +1

k = 2i + NSTRUT

j = LA{k)

kk = k-4

i) = LA(KK)

£ = xk +2aNSTRUT
22 =0.a(2)
m=k+2aNSTRUT
mm= LA {m)

nnz= LA(i)

HTL = HT

FLOW DIAGRAM (LGDET)

YES

Y(j) >(-€S(i

WRITE: " -ES(i) EXCEEDED"

PRINT VALUE OF ’5i

WRITE: "ES(i) EXCEEDEC "
PRINT VALUE OF S,

YES

P(j) 0
>0

[rrime = (seen-viinse (i) —

P |

TTIME = Y (j)7]pti) |

YES

TTIME 2 HT
NO

HT1 = TTIME

Yijii) < 0.

Y{jj) = O.
P(j)=0.

P(jj) < 0.
NO

YES

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (LGDET)

P{jj) = 0.

HT2 = KT

< =
° P{mm) 0
>0

[Tnu: = (S2T(i)-Y(mm))/P{mm)

I B

[rnm: =Y(mm)/|P(emm) |

\ YES
TTIME 2 HY

=

Yimm}>-ES2(i)

WRITE: “-ES2(i}EXCEEDED"
PRINT VALUE OF S2,

Y(mm)<ES2(}!)
NO

@M)S(SZT(I)-ESZ(I))
Y NO

Y
——Es—-@n)S(SZT(I) + 532(@
{NO

WRITE:"ES2 (i) EXCEEDED"
PRINT VALUE OF 52,

YE

HT2 =TTIME }--

a4

NO " vieg)<o.
YES

Y(28)=0.
P{inm) = 0.

P{Ll)<o.

[_i:(w =0,

4

AFFDL-TR-/1-155
PART IV

FLOW DIAGRAM (LGDET.)

‘ES—Q(M) > o.)
Po

Y(£4)=0.
P{mm) = 0.

C P(22)<O}N2~

YES
Y

P(£4)=0.

—
o=~

YES

RETURN

AFFDL-TR-71-155
PART IV

7. ASRCH, TDATA - DIRECTORY SEARCH ROUTINES.

a. Purpose - To provide a BCD word look-up from a subscript.

b. Method - Given a subscript, the routine will search the directory
for the BCD word corresponding to that subscript. If the subscripts do
not compare the BCD name is set to blank and return to the Calling Program

is made.

¢. Usage - Entry is made to the routine with the following statement:

a. CALL ASRCH (LOC1, SYM1)

where

LOCT
SYMI

subscript being searched

the variable name into which the routine is to store

the corresponding BCD name.

d. A call to the subroutine TDATA initializes table name data
which is used by subroutine TABRE (in Overlay (1,0)).

46

R I P ER

™

AFFDL-TR-71-155
PART 1V

8. DEF - HEADING AND PAGE EJECT ROUTINE
a. Purpose - To provide page ejection ard title printing.
b. Method - Initially the current page number (NPAGE) is incremented
by 1. The title is printed and returned to the calling program.
c. Usage - Entry is made via the statement
CALL DEF
9. STFL, STFLD, STQVAR, ARRAY - Storage and Printing
of Output Routines
a. Purpose - To provide a method of printing output names of
variables and their values when necessary. Names of variables or values
which are to be printed are not actually printed by the routines until
at least eight have been accumulated by a series of calling seguences.
b. Method - Each time a call is made, names of variables or values
are saved until eight are stored. At this time they are printed. This
process is repeated until all names or values have been hanuled. If
less than 8 remain, they are saved for further call statements or until
forced to be printed.
¢. Usage
(1) The printing of Hollerith Code
CALL STFL (JOPT, N, ARGY)

JOPT = 0: Force any possible remaining print
JOPT = 1: See (2) below for printing of Values of Variables.
JOPT = 2: Prints N words of Hollerith information from AKGI (1),

ARG] (2), . . ., ARG] (N) where there is at most 6 characters per word.

3: Prints 1 word of Hollerith information.

JOPT
N shculd equal 1.

47

YEERT T AL

AFFDL-TR-71-155
PART IV

The above call adds the N Hollerith code words to the list of code
words to be output on the next line of print. When § code words have been
accumulated, the line is printed; any excess code words are added to
the list for the next line of print. Codes are printed with "7X,86,7(9X,A6)"

format.

(2) The printing of Values of Variables
CALL STOVAR (N, A1, A2, . . ., A8) 1 <N<8
where N is an integer identifying the number of arguments following it.
If N < 8, then the remaining arguments mist be dummy argumerts. For

example, CALL STOVAR (6, A1, A2, A3, A4, A5, A6, DU, DU).

CALL STFL (JOPT, N, ARG1). This call prints the value
of one variable when JOPT = 1, N = 1, and ARG] is the name of the

variable.

Lines accounting is taken care of within this routine,
Values are printed with a "1PE15.7" format.

(3) Forcing final print

To force any possible rerzining print

CALL STFL (0, 1, DU)

AFFDL-TR-71 155
PART IV

FLOW DIAGRAM (DEF.)

DEF
‘ ENTRY

NPAGE = NPAGE+!
LONG = §
EJECT PAGE

WRITE ! "SIX- DEGREES
OF FREEDOM FLIGHT PATH
STUDY GENERALIZED
COMPUTER PPOGRAM "

WRITE : "INDSDF 2"

CASE (NCASE), 3TA€S

{NSTAGE), PAGE (NPAGE)

RETURN

AFFDL-TR-71-155
PART 1V

FLOW DIAGRAM (STFL)

INTIALIZES BY
DATA STATEMENT:
STELD) : I1z:0
ENTRY CLEAN =.TRUE.
INTEG = FALSE.

GETARG, = ARG,
NENT = §
K=2
CALL ARRAY (N,0)

ARGy * ARGI;
i=l,..., N

NENT = |

i
—2 0 ser)22 \ .o
R C‘ 12)_

=
v £0
NENT = 2
K=l RETURN CLEAN = TRUE.
CALL ARRAY (N,0) CALL ARRAY (N, 1!}
NENT = 4 ' \
Ksi RETURN RETURN et — —————
CALL ARRAY (N,0)

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (STOVAR)

STHVAR
ENTRY

i('ul < 2)
NO

Y

™\ YES
<;|NIVS 4)

l NO

GETARGg = H
GZITARGy* 6
GETARGg « F
GETARGg = E

l.‘

GETARG4 = D
GETARG3 = C

t

GETARGp * B
GETARG, = A
NENT = 2
K= 2

CALL ARRAY (N, 0)

RETURI9

51

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (ARRAY)

WRITE : AL!ST; i =1,
“,12("A" FORMAT)

. =0

1250
(NENTLENT YES (::)
NO (CLEANmFALsa‘YES 4
NO]
[
CJZ_)—*—W 2)
70

|
CLEAN @+ FALSE.

CLEAN = .TRUE.

)

CALLLINES (1)

ﬁ
LENT24)YES
~—

[NO

F

r
WRITE: ALIST;,is!,
“, 12 ("FL.PT"FORMAT)

WRITE : ALIST;,i= 1,

[y}

., 1207 1" FORMAT)

- INTEG = (N.LTO)
- NMAX =|N]

4 LENT = NENT
=i

52

AFFDL-TR-71-155

PART IV

FLOW DIAGRAM (ARRAY)

YES
RETURN

O

|

J > NMAX)
NO

I2=12+1

ALIST(12) = GETARG {J)

{

ALIST(12) = ARG(J)

?l

J=zJ+1

C 12:8)0

YES

53

bt ilinechatee:

AFFDL-TR-71-155
PART 1V

10. LINES - LINES ACCOUNTING ROUTINE

a. Purpose - To keep an accounting of the number of lines prin.ed

per page, and to provide for page control. q

b. Method - If the number of lines to be printed (LCAUNT) is such
that it will not fit on the current page, the page is ejectad (via DEF)
and printing will begin on the new page. Initially, the location L@NG
should be set to zero, indicating that currently no lines have been
printed on the present page.

c. Usage - Entry is made via the statement,

CALL LINES (LCPUNT)

where
LCAUNT = A fixed point variable or constant indicating the

number of lines to be printed.

11. ASIN - ARC SINE FUNCTION
a. Purpcse - To compute the arc sine of a normalized floating
point argument (X}.

b. Method - -1 - -1
Sin (X) = 3 - Cos (X)

c. Usage - The Arc Sine is computed using the statement, Y = ASIN (X)

where [X| < 1., and ¥ = sin”! (X).

12. ACOS - ARC COSINE FUNCTION

a. Purpose - To compute the arc cosine of a normalized floating point
argument X.

b. Method - For |X| <7.4505806 x 1077 the arc cosine is set equal
to n/2. For X = 1., arc cosine is set equal to zero,and for X = -1 arc
cosine is set equal to m . When the argument X # +1., the routine gives

the arc cosine in radians from C to =.

54

—

. T e reeey =

AFFDL-TR-71-~155
PART 1V

FLOW DIAGRAM (LINES)

LONG = LONG + LCOUNT

Y
—e(gwe < 1)

NO
Y

EJECT PAGE AND WRITE

HEADING
CALL DEF

LONG = LCQUNT

55

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (ASIN)

ASIN
ENTRY

(SIN"'x) = Z-cés™"tx)

56

AFFDL-TR-71-155
PART 1V

c. Usage - The arc cosine is computed using the statement
Y = ACPS (X)
where [X| < 1. and ¥ = Cos™' (X).

13. ATAN2 - ARC TANGENT ROUTINE
a. Purpose - To compute the arctangent of the quotient of two
normalized f]ohting point quantities Y/X, with proper quadrant control.
b. Method - The routine computes the quotient Y/X. The arctangent
is computed with quadrant according to the sign of Y and X. If X =0

Y =w
and Y # 0, the routine computes € = Tan'1 (Y/X) = ,;}' 7

If X=0and Y = C, it computes

2= Tan"! (¥/X) = o.

c. Usage - The arctangent of Y/X is obtained via

Z=ATAN2{Y,X)

14. ERROR, EXERR - GENERAL TABLE ERROR ROUTINE

a. Purpose - To provide a method of indicating the table which
may possibly contain an error. Also, to provide the Stop Number that
identifies an error condition in an equation.

b. Method - By the statement CALL ERROR (LOCT) in which LOCT is
the subscript of the curve in error, the routine will search the subscript
table and find the corresponding BCD word. This word will then be
printed as:

"TABLE ERROR AAAAAA"

57

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (AC$S.)

WRITE: " ARGUMENT
PUT ¢F RANGE
- {x) "
ACPS = 99999999,

SA= |,

X2z 1.~(2. #Xinw2.)

SA = 0.

X2 =(2.a Xiun2.)-1.
YES

Ixt>
74505806 X107° }i‘
. AzA+SAR2. en(-(I-1)-1)
X1 = x2

e

YES

1
[acés = 31415926 w & |

rACOS = 3.1415926 J———-

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (ATAN2)

ATAM2
T (o re—
~ Jves
AA (1) = .186264SISE- 8 ————@mnz = SIGN (Px¢vz.n]
AA(2)= 17632698IE +0
AA(3)= 577350269E +0
AA (4)= II9ITSISIE +1 f
AA(S)=.274747742€ + INDIC = (X.LT.0.0)
AA (6)= 134217728 +9 R = /X
A (1)=.449587214€ +0 z: |R|
(2)= 195014224€ +0 I =1
(3)=.944754986E - 1

A

A

A (4)= .288535059E-1
8 (1)=.139886708E +1
8 (2)=.396045266E +0
B (3):=.218181818E + O

B (4)= 1687240ISE +0
PN (1)= .349065850€ + 0
PN (2)= 698I3I70IE + O
PN(3)= .104TI9755E +1
PN (4)= i39626340E +1

c1 = .511194590E - ¢

C2 = .270998425E -2
€3 =.216649136E +0
L = .163636364E +0

PIPY2= I1STOTI633E +1
ONEPI= 314159265E€ + 1

ATAN2 = C.

rumz = énerr |

RETURN : -

L ATAN2 = PIQV2

59

AFFOL-TR-71-155
PART IV

FLOW DIAGRAM (ATAN2'

1
YES
ATAN2 > O,
NO
Z2=2Z L
J=S -1
P:0-.0 ’——'LATAN2=ATAN2+¢NEPI]
L—-{ﬂmz = ATANZ - PNEPI I--——-
I=1-2
J= 6-1
Pz PRI} .
7 = A(I)-B{I)/(Z +AALI))

{t

T=Zwn2 +C3—C2/

{Zxx2) + C4L)
AT.. 2 = Z/T+ P

[aTaNZ = 816N (aTANZ,R) |

.NOT. INDIC

60

AFFDL-TR-71-155
PART IV

Where AAPAAA is the BCD name of the table. If the name cannot be found
in the directory

“TABLE ERROR

LOCATICN OF TABLE NOT LISTED IN DIRECTORY" is printed and a
return to the calling program is made. In either case INDSTE is set
to zero. By the statement CALL EXERR (NUM) in which NUM is the stop
number, the routine will write "STOP NUMBER III"
where III = the stop number. If NUM = 0, an exit is made from the routine
with no printing. In either case INDSTE is set to zero.

c. Usage - Entries are made to the routine with the following

statement:

(1) CALL ERROR (LOCT)

where LOCT is the table subscript.
(2) CALL EXERR (NUM)

where NUM is the stop number.

15. NDTLU - N-DIMENSIONAL TABLE LOOK-UP ROUTINE

a. Purpose - To provide a method of 1inearly interpolating in s
table of n independent variables.

b. Method - Given the arguments X(1), X(2), . . . , X(N-1), the
routine computes Y = F(X(1), X(2), . . ., X{N-1)) by linear interpolation

from a table.

61

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (ERR9R,EXERR)

ERRPR

NUM
NTR

INDSTE = O INCSTE=O

CALL LINES (2)
CALL ASRCH (1LOCT, NAME)

‘
[NAME =

YES
IBL

CALL STF I
Y CALL LINES (3)
WRITE. " TADLE ERROR WRITE: A .
(HAME) " STOP NUMBER (NUM)__

[WRITE. " TABLE ERR§R "
WRITE: "... LOCATION
OF TABLE NGT LISTED
IN DIRECTHRY .. . "

AFFDL-TR-71-155 1
PART IV :

¢. Usage - Entry is made via the statement:

CALL NDTLU (ND, NA, X, Z, XA, ZR, IE)

where
ND = Dimension of lock-up (when Y = F(X), ND = 2)
NA = An array of length ND-1. Numbers of values of each table of X.
The tables are listed by size.
X = Tables of each X in order.
Z = Function Values. If A = F(X, Y, Z) the dependent variable

array must be ir the following order.

Assume NX=4, NY=3, NI=2.

w(1) = F(x1, N1, Z1) W(13)= F(X1, Y1, 22)
W(2) = F(x2, Y1, 21) W(14)= F(x2, Y1, 72)
W(3) = F(X3, Yi, 21) W(15)= F(X3, Y1, Z2)
W(4) = F(x4, Y1, 21) W(16)= F(Xx4, Y1, Z2)
W(5) = F(X1, Y2, Z1) W(17)= F(x1, Y2, Z2)
W(6) = F(x2, Y2, Z1) W(18)= F(x2, Y2, Z2)
W(7) = F(X3, Y2, 71) W(19)= F(X3, Y2, 22)
W(8) = F(x4, Y2, 71) W(20)= F(X4, Y2, 72)
W(9) = F(Xx1, Y3, 71) W(21)= F(X1, Y3, 22)
W(10)= F(x2, Y3, 21) W(22)= F(x2, Y3, Z2)
W(11)= F(X3, Y3, Z1) W(23)= F(X3, Y3, 22)
W(12)= F(X4, Y3, 21) W(24)= F(X4, Y3, 72)
IR = Results
IE = Error Code
= 0 No errer

-1 X array toc small
1 X array too large

2 array not i; ascending order
63

—— - ; 44:nn---Jua-------II--lhIl-r“-III..K_‘.III-.-..."

AFFDL-TR-71-155
PART IV

Let n be number of indpendent variables, then the table is called an "(n+1)

dimensional table."

= F(X], Ce e Xn)

To use a table of dimension > 3 ana £ 5, a call to HIHP should be

made with the 1ist of arguments in the calling sequence in ihe same order

as the independent variabies are numbered.

16. ATMS - ATMOSPHERE CALCULATION ROUTINE (1969)

a. Purpose - To compute the atmosphere characteristics: Density,
speed of sound, pressure, temperature, and kinematic viscosity. A1l
are a function of altitude.

b. Method - A1l atmosphere characteristics are computed using the
1969 ARDC model atmosphere. Values of the atmosphere characteristics
are computed for positive altitudes. If an altitude is negative, the
sea level value will be obtained.

c. Usage - Linkage is affected by

CALL ATMS (HGC7F)

where HGC7F = altitude in feet

17. INVR3 - INVERSE OF A NONSINGULAR 3X3 MATRIX

a, Purpose - To compute the inverse of a nonsingular 3 x 3 matrix.

b. Method - Let a = [aij] i, =1,2,3
then A']
The matrix A must be stored in the usual FORTRAN sense (i.e.,

columnwise).

64

.] . '
IR [Aij] is computed where Aij is the cofactor of a,

j°

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM {(NDTLU)

NDTLU\ (CDC6600.)
ENTRY
(IBM | 7094) EQUIVALENCE
(XMM, MM),
(XMW, MW)
IE=O0
L1 =2 -
LF = ND
1=0
I=I+1 f
L2=1Ly +NA(I)-2 FIND = L¢
FIND = 0. NS(I)=J—2.
J= L1~}
(\ YES
X(J) >x(J-1) }

NO

™

RETURN}=

Li=L2+2 3

(73]

AFFDL-TR-71-155
PART 1V

NO i
I 2 LF
YES

KF =2us LF
MW = -2
I=-4

MW=MW + 2
NPT = 1

E
|

FLOW DIAGRAM

(NOILU)

coC

JsJ + 4
MM=2a+(J-1)

6600

YES
AND(MM,MW) = 0.

YES /o
AND (XMM, XMW} =0)
| -

NO

N=NS(J) + 1

|

N=NS(J)

66

l

N=N-L1{
Lti=Lg + NA(Y)
{Z=NPTx (N-1) +12
NFT = NPT % NA (V)

NO ~
] J2 LF)

YES

Will)= 2(4Z + 1)
WJll+1i= Z(IZ +2)

I=1+1
M NS 1]
PER = IXA(I) - X(M))/
(£09 4+ 1) -X{Mm))
KF = KF/2
J=0

AFFDL-TR-71-155
PART 1V

FLOW DIAGRAM (NDTLUV)

Y

JzJ+1
WJlV)=Wil2xJ -L)+
(WI(2%J)-WJI(28J-1))
«# PER

O

RETUR

67

AFFDL-TR-71-155
PART 1V

HB (1) = O

HB(2) = 11000.
He(3) 25000
HB(4) = 47000.

HB (5) = 53000,

HB (6) = 79000.

H8 (7) = 90000.

HB (8) = i05000.
HB(9) = 160000.
HB{10) = 170000
HB{IN = 200000.
RHPB (1) = 23.7692E-4
RHOB(2) = T.0620E -4
RH$B(3) = 7.7650E€ -5
RHGB (4) = 2.8B04E-6
RHOB (5) = 13.9468E-7
RHPB (6) = 4.1189E-8
RHPB(7) = 4,2610E-9
RH$B (8) = 2.2320E ~10
RHB (9) = |.8450E-12
RHOB (10) = 1.3380E-12
RHOB (11) = 6.1{30E-i3
PB(1) = 2116.21695
PB(2) = 472.73
PB(3) = $1.979
PB(4) = 2.515%
PB(S5) = 1.2i81
PB(6) = 2.108E -2
PB(7) = 21.809E-4
PB(8) = 15.562E -5
PB(9) = 75.S7T8E-7
PB(I0) = 58.954E-7
PB(II) = 29.759E-7
TB(1) = 5i8.688
T8(2) = 389.988
TB(3) = 389.988
T8({4) = L08.788
TB(S5) = 508.188
TB(6) = 298.188
T8(7) = 298.i88
TB(8) = 406488

TB8(9) = 2386.i88
Te(10) = 2566.i88
TB8(il) = 2836.188

I

FLOW DIAGRAM {ATMS)

68

v

AKY (1) = -.225569€E -4

AKg (2)= .0
AK{ (3)= .138466E -4
AK{ (4)= .0
AK{ (5) = -.159202 E -4
AKY {(6)= .0
AKi {(7)= .24|458E -4
AKi (8) = .886289E-4
AKL {9) = .7T54344E-5
AKL (IO} = .3507ISE-S
AKL (11) = .222129E -5
AK2(1) =~ 5.25612
AK2(2)= O.
AK2(3)= 11,3883
aAK2(4) = O,
AKZ{5) =~ 75928
AK2(6) = O
AK2(7)= 8.5412
AK2(8)= 1.70824
AKZ(9) = 3.41648
AK2(10) = 6.83296
AK2({11) = 9.76137
AK3($)= .0
AK3(2) = .I57689E-3
AK3 (3) = .0
AK3(4) = 120869E-3
AK3(5) = .0
AK3(6) = .206234E-3
AK3(7) = .0
AK3 (B) = 0
AK3 (9) = 0
AK3 (1O = 0
AK3 (11} = 0
A(L) 759511
A(2)= 9357867
B(1)= 174164
B(2)= .273966
c(1)=220.
c(2) = 180.
D(1)= 25.
D(2) =140.

UmReT T T

AFFDL-TR-71-155
PART 1V

INDATM = O

SR,

HGCTF 2 2.5E6

NO

ANUATF = 0.
RHOAS = 0.

NO

FLOW DIAGRAM (ATMS)

HGC7F < O.

YES
VSTTF = H16.43372
TAT?R = TB (1)
PAT7P = PB (1)
ANVUATF = | ,5723288BE-4
RHOAS = RHPB (1)

v

TMP = 3048 # HGCTF
HGP = TMP/i. +
TMP/6356766.)
HCT90 = TRUE,

M=2

HGP > 180000.

YES

(HGP > 90000,

[weroo-.rase. |

>

69

HGP > HB(1)

LAY=1-1 >

TMP = HGP - HB (LAY)
TMP2 = |+ AK1 (LAY » TMP

AFFDL-TR-71-155
PART 1V

FLOW DIAGRANM (ATMS)

??
- T HGV 90)

F
\

STA77R = SQRT{TA?7R)
VSTT7F = 49.020576

* STA7TTR

ANUATF = 0226988E -6
{TA7T7R2 STATTR
/{{TATTR + 198.72)

»« RHOAS))

[even = TRUE. |— i

VSTTF =0,

} ANUATF = O,

_ TAT7R = TAT7TR = (A{M)
EVEN =. FALSE, - B{M) x ATAN (KGP

- C(M)/D(M)})

e,

|
2 a({LAV/2) ™
.NE.

LAY

[TA77R = TB(LAY)W TMF2 |

EVEN

PATTP = PB (LAY) #
TMP2 na (-AK2(LAY))
RHPAS = RHOD (LAY) »
TMP2 w4 (~1.- AK2 (LAY))

!
TMP3 = EXP(-AK3 (LAY)

» TMP)
PATTP = PB{LAY) % TMP3 —
RHPAS = RHPB (LAY) =
TMP3

P

70

AFFDL-TR-71-155
PART 1V

c. Usage - Linkage is obtained via the statement:

CALL INVR3 (A,B, INDER)

where
A = the array name of the matrix to be inverted.
B = the array name where the resulting matrix is to be stored.
INDER = an error indicator set by the routine.
(a) INDER = 1, results are good
(b) INDER = 2, A was O.

18. MULT31 - A MATRIX MULTIPLICATION ROUTINE

a. Purpose - To postmultiply a 3 x 3 matrix by a 2 x 1 matrix.

b. Method - The result of [A] [B] = [C] is computed using single
precision floating point arithmetic. A1l elements must be stored in
the normal FORTRAN sense (i.e., columnwise).

c. Usage - The matrix multiplication is obtained by the statement:

CALL MULT31(A,B,C)

where
A = array name of the 3 x 3 matrix [A]
B = aurray name of the 3 x 1 matrix [B]
C = array name of the resulting 3 x 1 matrix [C]

1

AFFDL-TR-71-155
PART IV

F_OW DIAGRAM (INVR3Z)

B(1,14 = A(2,2) »A(3,3)-£(2,3])~8(3,2)
D =B(1,1) x A(1,1)

8(1,2) = A {3,2) »A(1,3)-A{{,2)2A(3,3)
D =D +8B({,2)nA(2,1)

B{1,3) = A{1,2) »A(2,3) - A(2,2) % A(1,3)
D=0D+8(1,3'=A(3,1)

B(2,1)= A(3,1) = A12,3)-A(3,3) « A(2,1)
812,2) = A(4,1) n A(3,3) - A(3,1) = A(L,3)
6(2,3) = A(2,1)»Al(1,3) -AlL,1) » A(2,3)
E(3,1)=A.2,1i» A(3,2) -A(3,1)« A(2,2)
8(302) = A(sgl)*A‘liz) - A(lnl) * A(S'Z)
B(3,3) = Al1,1) » A(2,2) - A1, 2) = A(2,1)

'

CALL ZVCHK (INDER)
J=0
1= 0

INDER = 1

[e1,0:=80,0/0 |
oy
YES NO
INDER= 2
YES

L CALL DVCHK (INDER) 1r

INDER = 2

L

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (MULT 31)

I =0

|

[=I+1
c(r)=o0.
J=0

F

JsJ+d
ClI)=C(D+AlL,J)aB(J)

|

Cst)N—o——

YES
_ic I3)
YES

73

AFFDL-TR-71-155
PART 1V

19. TRNP@S - A 3 x 3 MATRIX TRANSPOSE ROUTINE

a. Purpose - To transpose a 3 x 3 matrix TA] to obtain “he 3 x 3
matrix [A]'.

b. Method - The resulting transposed matrix is stored i a
separate array. All elements of [A] must be stored in the nc:rmal
FORTRAN sense (i.e., columnwise).

c. Usage - The transpose of a 3 x 3 matrix [A] is obtained by:

CALL TRNP@S (A,B)

where

>
[}

The array name of the 3 x 3 matrix [A].

=]
]

Tne array name of the 3 x 3 matrix [A].

20. HIHP - N-DIMENSIONAL TABLE CALL ROUTINE

a. Purpose - To set up the NA array and Z location of tables with
dimension from 3 to 5 as required by the calling sequence to NDTLU,
which is

CALL NDTLU(ND,NA,X,A,XA,ZR,IE), to make the call to NDTLU, and return

the function value or data on a table read error.

74

AFFDL-TR-71-155
PART 1V

FLOW DIAGRAM (TRNP$S)

TRNPS
ENTRY,

RETURN

75

AFFDL-TR-71-155
PART 1V

b. Usage - Linkage to the subroutine is made via the statement

CALL HIHg (N, LOCT, NX1, NX2, MX3, NX4, X1ARG, X2ARG, X3ARG, X4ARG, A)

where
N = dimension of table look-up, when A = F(x), N=2.
LACT = Jocation of the first value in the table.
NXT to NX4 = location ¢t number of points in the X1 to X4

array ov independent variables values

XTARG to X4ARG = name of X1 to X4 argument or a dummy location if N < 5.

A = location of the dependent variable.

21. TLU - TWO-DIMENSIONAL TABLE LOOK-UP ROUTINE

a. Purpose - Given ap argument X, to compute Y = F(X) from a table
of X and Y value. v linear interpolation.

b. Method - The table of X values is searched until for some
i, X; < X < Xi+]
Linear interpoi:ition is then verformed, If, for some §, X=Xi then Y
is set to Y,.

c. Usage - Eniry is made via the statement,

CALL TLU (X, LOCT, Y)

where

X

i1}
4

= variable name of the argument
LOCT = location of first subscript of desired table of data
Y = variable ﬁame of the interpolated value.

A1l tables are stored in a table called C. Therefore, the first value
of a particular table is located at C(L@ACT). As ar exaaple, assume
t1at the name of the desired table iz FTABO1. Then the curve must
be stored as follows:

C(LACT) = FTABO! (1) = N=io. of points in curve (integer)

75

AFFDL-TR-71-155

PART IV

um!

ENTRY
XA{L) = X1 ARG
XA{2) = X2 ARG
XA(3) = X3 ARG
XA{4) = X4 ARG
NA(1) = NX1
NA(2) = NX2
NA'3) = NX3
NA(4) = NXe
NAT = NX{

FLOW DIAGRAM {H1H$)

r NAT = KAY + NA(2)

—

[NAT = NAT + NA(2)+NA(3)

YES

I emw:—;)
{

CALL STF
CALL ERROR (L4CT)
CALL LINES (2)

F__—2_< IERRGR - 1

WRITE. " AN ARGUMENT
EXCEEDS LOWER LIMIT

$F TABLE"

—

WRITE. "AN ARGUMENT
EXCEEDS UPPER LIMIT

&F TABLE™

{

NAT = NAT 4+ NA(2)
+NA(3) + NA(4)

I1= NAT + LéCT

CALL NDTLU (N, NA, -I

TABLE (LOCT), TABLE(ID),
XA, A, 1ERROR)

r
|

WRITE' " INDEPENDENT
VARIABLES NOT IN

ASCENDING $RDER"

77

AFFOL-TR-71-155

PART 1V

LOCTML = LOCT- &
Z = c{LecT)
1=0

FLOW DIAGRAM (TLU.)

L CALL ERROR (LCT)

]

I=1+1

J=2aTl+LPCTME

YES

YES
J>LOCTML+2

78

Y=C{u-1) +(C(yu+1)
-Clu-1)n (X-Cly-2
/C(4)-Cclu-2))

1

)

RETURN

AFFDL-TR-71-155

PART 1V
C(LACT+Y) = FTABOY (2) = X
C(LACT+2) = FTABOI (3) = Y
C(LACT+3) = FTABOI (4) = X,
C(LYCT+4) = FTABO1 (5) = Y,
C(LACT+2N) = FTABO1 (2N) = X

N
C(LBCT+2N+1)= FTABO1 (2N+1) = YN

22. TFFS1 - ENGINE THRUST AND THROTTLE SETTING
a. Purpose - To provide a method of introducing the engine

thrust characteristics into the computation, with an cption to find the

throttle setting that corresponds with a certain thrust ard Mach number.

b. Usage - Linkage to TFFS is accomnlished via the following
statements:
(1) CALL TFFS1
Pre-data initialization.
(2) CALL TFFS3
Thrust computation section.
(3) CALL TFFs4
Initial print
(4) CALL TrFS5
Code printing to identify the coming time history.
(5) CALL TFFS6

Time History Print

79

AFFDL-TR-71-155
PART TV

(6) CALL TFFS7

Update integration (none for this subprogram)

23. VPCS - Vehicle Physical Characteristics
a. Purpose - To introduce variocus physical characteristics into
the general solution of the problem. Here, mass, moments, and products
of inertia of the vehicle and rotating machinery, reference lengths and
areas for aerodynaric coefficients, jet damping characteristics lengtns,
and center of gravity information are included.
b. Usage - Linkage to VPCS is provided ty the following statements:
(1) CALL VPCS1
Pre-data initialization. Necessary nomina” values are set.
(2) CALL vPCS2
Post-data initialization.
(3) CALL VPCS3

VPCS cumputations are performed if INDVPC is non-zero.

80

AFFDL-TR-71-155

PART 1V
FLOW GIAGRAM (TFFS1)
SET TO ZERO. T, , SET TO Z2ERO: T, ,
Ty , TZ'LTl“T' NT Ty 'Tl 'LT'MT'NT
TXBTP = 0. TXB7P = O,
TYB?P = 0. TYBTP = O.
T287P = O. TZB7P = 0.
ALT77F= O. ALTT7F = 0.
AMTT7F= O. AMTTTF = 0.
ANT77F= O. ANTTTF = 0.
' YES (InoTFF=0)
RETURN —
NO
ENTRY | 1=0 I
TFFS4

I=1+1

¢BTAIN T(I) = fIN(I),My):
CALL HIH$
MT(D) =T(D = ZN(I)
NT(I)= -T(De YN (I)
LA TXB7P = TXB7P+ T (1)
AMTTTF= AMTTTF+MT(1)
ANT7TF = ANTTTF +NT(1)
YES
(INOTFF = 0)l
/)
NO

WRITE TITLE: " TFFS
WRITE CODES: "MT ",
D'NT "

81

e e A A e xR b b

AFFDL~TR-71-155
PART IV

FLOW DIAGRAM (TFFS!)

ENTRY
\TFFS6

(_ 1noTFF0 R

NO

WRITE TITLE: "TFFs"

WRITE VALUES ¢F
MT, NT (i.e.,

AMT T7F, ANT77F)

WRITE CODE: "T(I)"

WRITE VALUES OF
T(I), D =4,...,IN

AFFOL-TR-71-1758

(@)
&
&)
&

YES ' \NpvPC =0

NO

SET TO ZERO: Iy,

lyys lazs 'xy iz !yz '

730 S5 v . &
BS!IXX=0.
BSIIYY=0.
8S112Z2=0.
BSIIXZ=0.
BSIIXY =0.
BSIIYZ= O
ALLJDF=O0.
ALMJDF=0.
ALNJDF=0.
ALYJDF=O.
ALZJDF= O.

INDXZS=0 \ES

FLOW DIAGRAM (VPCS!)

INDVPC =0
o

INDVPC = O
NO

WRITE . " INITIAL
PRINT QUT FOR VPL3"
WRITE. "XCGRF AREFF
DIRFF “ZRFF"

WRITE VALUES FOR
XCGRF, AREFF, DIRFF
AND DZRFF

WRITE HEADING . "VPCS"
WRITE CODE : "AMASS "

NO

WRITE HEADING . “vPCS”
WRITE VALUE OF | AMASS

RETURN

Imxzas:o.

NO

[ves

INDXY¥S=0

NO

A1XYBS=0
AIYZBS=0.

33

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (VrCS!)

NO

Y,

C INDTS® =0 }Ef-—@
NG

OBTAIN VALUES FOR
XC.G.t le |Iyy ’ AND

122 WITH 4 CALLS OF
CALL TLU

XCGBF = XCGBF +EPSI8

AIXXBS = AIXXBS +EPSI9
AlYYBS = AiYYBS +EPS20
AIZ2BS = Al ZZ 35 +EPS2I

(moxzs<o)L——-

YES

OBTAIN VALUES FOR
Ly, Tyz WITH 2
CALLS OF :

CALL TLU
AIXYBS = AIXYSS +EP$22
AIYZBS =A1Y2ZBS+EPS24

e NO
1HOXY$=0
(Croxeso)=
YES

!
GBTAIN VALUE FOR I, °

CALL TLU
AIXZBS=AIX28S +EP523

84

OBTAIN VALUES FOR
lylthll ,[m AND
£ WITH 5 CALLS OF
CALL TLU
AS: ALYJDF,ALZ JDF,
ALLJCF, ALMJDF, ALNJOF

NO

!

OBTAIN VALUES FOR iyy,
Iyys AND iz, WITH
3 CALLS ¢F!

cALL TW
AS. BSIIXX, BSIZYY,
BSI1Z2 (EQUIVALENCED
T¢ AIXXSI,
AIYYS!,AND AIZZSI)

OBTAIN VALUES FOR Iy

AND 1y, WITH Z CAUS
CALL TLY

AS: BSIIXY, BSI1YZ

(EQUIVALENCED T

AIXYS! AND AIYZS!)

AFFDL-TR-71-155
PART 1V

FLOW DIAGRAM (VPCSI)

ES

y

OBTAIN VALUE FOR I,,2
CALL TLU

AS: BSIIXZ
(EQUIVALENCED TO
AIXZSH)

N
CINDXYS=D—O—-———-
Y

DXCGF = XCGEF - XCGRF

RETURN

AFFDL-TR-71-155
PART IV

(4) CALL vPCS4
Initial print

(5) CALL VPCS5
Code printing to identify the coming time history is performed
if INDVPC # O.

(6) CALL VFLU6

Time histury print.

24. SACS - AERODYNAMIC FORCES AND MOMENTS

a. Purpose - To provide a complete accounting of the various
contributions to the aerodynamic forces and moments, regardless of the
flight conditions or the vehicle considered. In SACS coefficients
are computed in the proper coordinate system for use in other parts of
the TOLA program.

b. Usage - Linkage to SACS is accomplished via the following
statements:

(1) CALL SACSI

Pre-data initialization.
(2) CALL SACS3

Aerodynamic computation.
(3) CALL SACS4

Initial print. (None for this subprogram).
(4) CALL SACSS

Code print to identify the trajectory point for SACS.
(5) CALL SACS6

Time history print for SACS.
(6) CALL SACS?

Update integration (None for this subprogram).

86

o TR T TR e AR

AFFDL-TR-71-155
PART 1V

(7) CALL SACS8 (CLR, o, CDR)
Determine the a d that corresponds with CL and CD.
(8) CALL SACS9 (a , C» CD)
Determine the CL and CD that corresponds with a .
(9) CALL SACS10 (a)
Determine éqn as a function of a d and all current variables.
(10) CALL SACS11 (GrN)

Determine & r as a function of all current variables.
N

25. AERP1 - AERODYNAMIC DATA LOOKUP FUNCTION

a. Purpose - To look up aerodynamic data from the table array in
COMMON TBDIR/C(300). It looks up the first two values of a particular
table depending on the argument of the function.

b. Usage - Linkage to AtRP1 is accomplished in the following ways:

Y = AERP1 (L@CT, AER@2)
where LOCT = subscript for the table C{300)

which will be the 1st location of a particular table that one is interested
in.

After the function is executed,

AERP]1 = 1st value of the table that begins at C(L@ACT)

AERPZ

2nd value of the table that 1s located at C{LACT + 1)

26 . AQUAD - A QUADRATIC FUNCTION
a. Purpose - To solve the equation a|x|x +b x +C =0
b. Usage - Linkage to AQUAD is accomplished in the following way:
Y = AQUAD (A, B, C, XLLIM, XULIM)

87

ca

AFFDL-TR-71-155
PART 1V

FLOW DIAGRAM (SACSI)

Y. £, m,n
AA7TTP = 0.
ANT7P= O.
YATTP= O.
ALAT?F=0.
AMATTF =0.
ANAZTF =9,

SET T® 2ERQ: a, nf,

YES

INDAER=0

INDAER=0

NO

88

:
Um'rs HEADING . “SAC | " |

}NO

[‘wnm-: CODE : “"CAVAH"

|
WRITE CODES: “cA
CN CY

WR.TE CODES: "CL
CM CNN"

® WRITE VALUES FOR: CA,
CN,CY
@ WRITE VALUES FOR: CRM,

CM, CYM

ENTRY
sACSS

[WRITE vaLu€ FoR: cavau |

NO

[
YES INDABO =0

NO

YES
Gy —

e

AFFDL-TR-71-185
PART IV

FLOW DIAGRAM (SACSI)

|

IGoI =1

1602 =1

1603 =1
SET ALL AERODYNAMIC
COEFFICIENTS TO = ERC

{ INDARC >—‘_’—-T
—

F
,)
NO
VSTTF = 0.

—
YES

CA = CAMNU

CN = CNIMNU

CY = CYMNU

CRM =CLMNU

CM =CMMNU

CYM =CNZMNU

I HG =HGCTF
NO 1AP 2 3)

-

[re-e]

TMF (1} = EXP (-4.6
#(HG ~HCG)/ (DZRFF
-HCG))

YATTP = (EPSSaCY
+EPS6) » DYNPPX AREFF
ALATTF = (EPST #CRM
+EPS) » DYNPP

* AREFF » D2RFF
ANAZF = (EPSI 1= CYM
+EPSI12) n DYNPF

»AREFF w D2RFF
AATTP= (EPS3 #CA
+EPS4} # DYNPP R AREFF
ANATTP = (EPS I » CN
+EPS2) a DYNPP#AREFF
AMATTF = (EPS9aCM
+EPSI0)x DYNPP
#AREFF) » DIRFF

»

AFFDL-TR-71-155

PART 1V
FLOW DIAGRAM (SACS!)
(i1NpAC! = Cag © (AEROI(LOC(1),AERD2) - AERD2) » TMRI
+AERD?
YES
NO]
INDAO2 =0 | Cag? = (AEROI{LOC(2), AERO2) ~AERGZ 5 TWP(l) |y
+AERD2
YES | o
1
— NO
(INDAIS = O Cng_ =(AEROI(LOC(15), AERD2) ~AERNA) # TMP(|)
q +AERD2
YES K
NO
INDAI6=0 CNgq? = AERDI(LOC(I6), AERDE) - AERGZ) % TMPLI)
+AERD2
YES
|
NO
(INDAIO=0 | Cng = {AEROI(LOC(10), AERO2) ~AERG2) » TW 1)
+AERD?2
YES
NO
INDA! i 20 —e— CNg =(AEROI(LOC(! 1), AERDR) - AERD2) #-TMP(1)
+AER®2
YES
NO
INDAI2=0 | CNg2 = AEROI (LOC{12), AERD2) ~AERO2) s TMP{I)
+AERD2
YES
: NO
(INDa20:=0 CNg? =(AEROI (LOC(20), AERG'2) - AERO2) TMP(1
+AERO2
YES | o
] "o
(inpa22:=0 Cn,, = (AERDI(LOCI22). AERD2) - AFRD2) xTMPI1)
e g ¢ +AERO2
YES
i
_— No T
INDABO =0 1 Ca, = (AEROI (LOC(T2), AERO2) —AERD2)% TMF(1)
+AERO2
(SACS9)
=3
5
90
B T T e

AFFOL-TR-71-155
PART 1V

<

NO
moAsin——i
~—

YES

‘ INDASE
—

YES

FLOW DIAGRAM (SACS!)

Crag (AERQ®I (LOC(51), AERDZ, - AERDZ) % TMP(1) +AERD2

1

"

Cmg = (AERD!(LETC52),AERGZ; -AERGZ) » "MP(1) +AERD2

b

Cmq? =(AERDI{LOC(53) ,AERQ2}~AERD2)% TMP(1) +AERD2

.

-

C.8q =(AEROI(LDC(56), AERD2) ~AERD2) n TMP([} +AERD2

—

NO

‘ INDAS7=0

Cmdq? =(AERDI(LOC(5T), AERD2) ~AERO2)n TMP(i) +AERD2

VES [| |
[NG
moAse_:_EDu- Crmq/3 * (AERDI(LOC(S8), AERD2)- AERI2)NTMP() +AERD2 [—
YES [o p—
Y
NO
(' pase=c] Cmg8q “(AERBILOC(SS!, AERG2) - AERD2)r TMP(1) +AERD2 [——
YES |
1 NO
(mer-oTo_>———-— Crm/384 = (AEROI(LOC(E0), AERDZ)~ AERD2) ¥ TMP 1) +AERD2
— I
YES
L NO
IMDAB! = O >——'T Cm = (AEROI(LDC(61), AERDZ) - AERD2 }» TMP(1) +AERD2 [—
YES | o .
1
j NO
(mox«s@—ﬁ Cmgy,* (AERDI(LOC(62), AERW2) -AERO2) # TMP(1)+AERDZ [—
YES | 1
\ .
—— N0 T
3:0 Cmq = (AEROI LOC(63),AERD2)~ AERD2) # TMP(1)+8ERD2 |—

INDA6
—_——

Yoo

p—

91

AFFDL-TR-71-155
s PART IV
S FLOW_DIAGRAM (SACS1)
i
N
L. .) (sacs10)
~ NO]
R INDA27 = c)—e—-‘ CyB = (AERO! (LOC(27) ,AFRD2) ~AERD2) #THP(1) +AERO2 -
O BE) -
LYY ’
’ NO —
e 'NDA28=0. o] Cy2= (AEROI (LUC(28), AERT2) -AERD2) TMP{ |) +AERQ2
S ~
YES ! -
& . —
= NO
INDA68= 0 -| Cn3 ={AERD! (LOC{E8), AERD2) - AERO2} TMP{1) +AERD2 |-
. - YES |
b -
* | NO |
) INDA69< O --—lc, 3¢ =(AERQ®I(LOC(69), AERD2) ~AERO2) x TMP(1) +AERD2
. YES |
E) |
- o NO
L mom@—» Cn, = (AERO! (LOC(70), AERO2) - AERD2) % TMP(I)}+AERD2 |—m
YES | o
/__J ’
b v N
o] { moari =0 Cngy? =(AEROHLOC(71), AERG2) - AERO2)% TMP(i) +AERD2 [—
. YES | . — J
. : =2
N TGOD———@(SACSII)
‘e’ =
.8 NO 4
- INDAO3= O | Cag = (AERDI (LOC(3), AERO2) -AERD2)#TMP(4)+AERD?
A YES
S - vz | NO
(\8)4—{-»{ mono@»- Ca 3t =(AEROI (LDC(4), AEROZ) - AERC2)# TMP(1) + AERO2 |—
‘w."
Al
NQ‘ "‘ ’ L 2]
.
R 92

B A

AFFDL-TR~71-155
PART IV

FLOW DIAGRAM (SACSI)

NO
INDAOS = O -1 Cag, = (AER®1 (LOC(5),AERD2) - AERO2) % TMP(1) +AERO2|—
TYES[
1 NO
(' inDacs:=0 Cagq2=(AERO! (LOC(6), AERD2) - AERO2) # TMP(1) +AERD2 |—
YES |
!
| NO
(INDAOED——‘ Caq 3+ (AEROI(LOC(T), AERO2) - AERD2) #TMP(1) +AERD2
T]
NO
|NQA0@——- Chqgq" (AERDI(LOC(B), AERD2) - AERO2)ATMP (1) +AERT2
s]
-
(INDA’.)Q;O_)—&-{ CA 38 (AEROI(LOC(S), AERD2) - AERO2)x TMP{ 1)+ AERO2
YES _-l
- o
L NO
(mwpaiz:=o +—| Cng = (AERDI{LOC(I3), AERO2)-AEROZ) ¥ TMP()+ AERD2
YES _ﬂl

?V
NO
INDAlI4 =0 CNBF (AERQI (LOC (14} ,AERQ2) - AERD2) % TMP(1)+AERD2 L-,

jL o
INDAIT = D——o— CNGB=(AER0I (LOC(17), AERD2) - AERD2)» TMP(1) +AERQ2]

o [
INDAIB = O , cNaSq ={AEROQ! (LDC(18), AERDZ) ~AERD2)x TMP (1) +AERDZ -

<
m
7]

L

[—

(INDAI9= O-}—-’-‘ CNBSQ=(AER0I(L0C(§9).AER02)-AEROZ)!TMP(I)‘PAEROZ i—--

YES
1

YES NO
@-‘T“@’ Cng* (AERD! (LOC{20), AERD2)-AERD2)n TMP(1)+AERD2 |—
] ‘

1

93

Rl ol aantae bl LR ali e d

FLOW DIAGRAM (SACSI)

CNg, = {AERD!(LOC(2!), AERG2)-AERD2) ¥TMP(1) +AERD2 {~—m
X
NO
(mmzz:D——1 Cn, = (AERDI(LOC(22), AERD2) -AERD2)ATMP(1) +AERO2
YES | __
.’ NO
moAz@——- CNgx = (AERDI(LOC(23), AERGR)-AERORIATMP(1) +AERD2 [—
YES
]
e — NO _
lNDA24=£}>- Cyo = (AEROI(LOC(24), AERD2)-AERO2) #TMP(1) +AERD2 |-—m
YES |
\
I
(|NDA25=O_}->- Cyq = (AERDH(LOC(25), AERD2) -AERD2)# TMP (1) +AERD2
YES |
P
(INDA26:0)—»- Cyq? =(AEROI (LOC(26), AEROR)- AERD2)# TMP(1}+AERO2 |—
YES
NO
INDA29 =0 }—+— Cy3, = (AER®I (LOC(Z9), AEROR)- AERD2)#TMP(1) +AERO2 |—
YES :
NO
(' iNDaso=0 4 Cy5,2=(AEROI(LOC(30), AEROZ) - AERD2)% TMP(1) +
YES
NO
(INDA3I= 0) Cyq@ =(AER®I (LOC(31), AERO2) ~ AERO2)STMP(1) +AERO2
vES| _
—} NO -
INDA32 =0 CyaS, = (AERD! (LOC(32), AERD2) - AERO2)#T MP(1) +AERO2
YES .
NO
INDA33=0 = Cy38, = (AERDI (LOC(33)AERO2) ~ AERO2) #TMP(1) +AERG2

94

AFFDL-TR-71-1565
PART 1V

FLOW DIAGRAM (SACSI)

NO
INDA34:0 | Cy@ = (AEROI (LOC(34), AERG2) ~AERD2) # TMP(1)+AERO2 |—
YES | _
1
m .
(' iNDa35:=0 { €y, = (AEROI (LOC(35), AERGR) - AERD2)w TMP(1) +AERD2 |—
YES | _
NO
INDA36:0 | Cyr = (AEROI(LOC(36), AERD2) - AERO2)#TMP(1) +AERDZ | —
YES |
NO
(' Npa37=0 Cyr, = (AERO: (LOC(37), AERD2) -AERD2) # TMP (1) +AERD2 {—
YES|
o
INDA38=0 C /o = (AERO!(LOC(38), AERD2) - AERO)wTMP(I) +AERO2 |—
YES|
1
— NO
(INDA39:=0 | Ct o = (AEROI (LOC(39), AERD2)- AERO2)# TMP(1) +AERD2 |—
YES| _
NO
INDA40=0 C; g2 = (AERDI (LOC(40), AERD2)~ AERD2)% TMP(1) +AERD2 L__‘
YES [
NO
INDA4I =0 C1/3 = (AEROI (LOC(41), AERD2) - AERO2)x TMP(1) +AERO2 (—
Yes |
NO
INDA42=0 132 = (AERDI (LDC(42), AERO2)- AERD2)# TMP(I) +AER02
YES [
F NO
INDA43=0 Ceg, = (AEROI(LDC(43), AERO2) ~AERG2) # TMP(1) +AERO2 |—
YES |

NO
r@ C:S,’ 2 (AERQI {LOC(44), AERD2) ~AERD2) #TMP(1)+AERO2 |—

95

TR o ek i Ml i i

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (SACSI)

INDA45=0 C[aa = (AERO®(LOC(45), AERD2) - AERD2) TMP(1)+AERO2 |—

YES

Y

NO
(mom@——@ C1aBp = AEROI (LOC(46),AERD2) ~AERD2) « TMP (1) +AERD2 [-—
S——

YES

’-———\ NO
INDA 4_7:_0—j—c-4 c 188p° (AEROI (1.OC(47),AERO2)~AERD2)%TMP(I) +AERD2
YES

e NO
INDA48—=D——- C[p= {AEROI (LDC(48), AER(2)-AERD2)%TMP(1) +AERD2 |—

NO
C INDA49:= 0 >—l~"- C¢, = (AEROI{LOC(49), AERD2) ~AERD2)% TMP(i) +AERO2 |

NO
INDASO= 0 \——1 C[r = (AERDI (LOC(5C), AERD2) —~AERQ2) % TMH(1) + AEROD2
e’ x

YES

Ve NO

{ INDA5‘_‘1>——>—-‘ CmB =(AERQI(LDC(54), AERD2)-AERD2) TMP{1) +AERP2 |—
YES ‘_‘_____

:———--—ﬁ NO !
|NDA5€)_"—_O__‘)—" Cm32=(AER01(L0C(55),AER@?)'AERQZ)*TMP(IH’LEROZ -~
YES .]

__1.____ No [
INDAG4 = C et Cqu = {AERQI (L. 7(64),AERD2) -AFRE2) # TMP({1) + AERIR |
YES |
o
INDABS=0 +={ Cp, = (AEROI(LDC(3Y), ALRO2) - AERD2)2 TMP(() + AERD2 |
N
YES .

YES ——1 NO '
@TF*CNDAGQ;: 0 —m{ Cny = (AERGI(LOT(56), AERDZ) — AERD2}e TMP(1) +AERP -
- -

96

AFFDL-TR-71-155
PART 1V

FLOW DIAGRAM (SACSI)

e

Cng? = (AERQH{LOC(67), AERD2)}-ACRO2) % TMP (1) + AERD2 |—

INDAGT = 0O

YES |

NO
0 Cﬂaf! = {AEROI (LOC(72),AERD2) ~AERD2)x TMP(1) +AERO2 |—

——

INDA72

B
“l

B

RO
INDA73

YES

"
(o]

Cradr© (AER®! (LOC(73), AERD2)-AERD2) xTMP(I) +AERG2

n

NO
INDA74

"
(o]

‘ CnBSr=(AERO|(LQ)C(T4),AER02)-AEROZ)*TMP(I) +AERQ2 |—

1

NO
INDA7

YES

CnB = (AEROI(10C(TS), AERD2) - AERD2) +TMP(1) +AERD2 |——

-~

NO
‘ INDA?E—D*—‘ Can=(AER®|(LOC(?S),AEROZ)-AEROZ)*TMP(IH-AER(DZ
YES
1 w |
INDATT=0 Cn, = (AERDI(LOC!77), AERD2) -AERO2)#TMP(1) + AERD2

fﬂ
<
‘{Z
|

INDAT8=0] Cn,x=(AER®|(LOC(TG),AERQZ)—AEROZ)QTMP(I)+AER(D2 -

YES ‘r_._

Co = Cap* Caglal + Cag2 a® +CaglBi+ Cag? B* +Cag, |8a]
+Cag? 8q° *CAQSQIQSQ!*CAQ'B a8 + CAB8q | BBal

)
.

CL = Chg* CNg @ * Cng? @la] + CNg |81+ Cng2 B +Cng, Ba
+(;N802 Sq(|8q| + CNQSQ la| 8q + CNQ,B alB|+ CNBBQ 18] 8q
+(CNg *ONg, BXC6)ad1/2v, +(CNg + Cng, BXc) 9d1/2vy

Cp = Cn cosa ~Cy_ SING

(13)
b CN =CL cosa +(p SINa

97

AR, AFFDL-TR-71-155
e PART IV

e FLOW DIAGRAM (SACE!)

- 2
Cy = Cyo + Cyy lal+ Cy2 @®+ Cyg B +Cy328 18I
s +Cyg, Or + c,S,ZISr! 8r + Cyqs lal Se+ Cypplal B
- - +CYBST IB' Sr +(CVB +CyB*AXC,(;_)Bd2/2VA

I Cam =Clo + Crq 12l + Crq2 @+ Cpg|B|+ Cys, B
+Cp§p2 |8p| Sp + Cgasplal Sp+ Cta a3
+Ct G50 iB] 8p + Cpp 0d,72Va +(Cp + Cpp BXCG)rd2/2¥n

Cm *Cmg ¥ Cmq @ +Cmy2a|aj +cmB|B|+ Cr 32 B¢

+Cm8q 39 + Cmsq? 8al8al+ CmeBqial Be
e *Cmag @ lB! +CmB38q |8 8a +(Cmg *Cmay AXc.g)ady/zva
- +(Cmq + Cmqy AXC.6)ad,/2VA~CNAX¢ 6./ 9

o Cym =Crp Sra || + Chg? o +Cnﬁ B +Q'|BB+CnBZ <] 18]
; +Cng, Br +Cng 184 8r +Cpys] 8 + S pialB
o] +Cn 38, 1B 8 +(C g +Cngyhxc.6.) Bdz/ 2Va
. +(Cp, + Cnp, AXc 6)rdz /2Va—Cy 8Xc 6./ d;
B 98
b

P o e

- 7 R AR TR W
ek Aatanr it bt A N ooy T

AFFDL-TR-71-155
PART 1V

FLOW DIAGRAM (SACSI)

TMP2 = Cno + Cpng 8an CLy = Cny * CNg @1 * CNg2 layl a,
+Cugqz |3an]Ban - Cug *Cngq Ban * Cng2 [Bqnl Sqn
+CNqud‘/(2VA "’chqd“l/(sz)

: 2
’ Cp, = Cap* Caglaii+Cayza,

SOLVE FOR @y WHERE a| < a,:

CNg2fad]*Cng ag + TMP2=0

(THIS IS DONE BY USING THE

FUNCTION AQUAD)

V A

Chg = Cag*Caq l2d|*+ Cage ag? ——| RETURN

99

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (SACSI)

ENTRY
SACS!0
YES
1AP< 3
NO
Yy YES —
[Ho-Hg | <10

NO

]

TMP2 = c:a'arr'-"ducm&.2
TMP3 = qxSd, Cm 842
TMP4 = g Sd, {Cmc“ ad[cma+ Cma? |°di]
+Cmgq 9¢ 9, /(sz)} MY EMT + My
-8Xcp axS ({CNO" da[Cng * gt 2dl |
+Cng,q Ban + CN802|SQN| Bay
+CNg 94 9, /(ZVA)] cos Qgy

+ {CA°+ CAG lddl +CAG! a4y } SlNad>

)

SOLVE FOR 8qy WHERE 3q_ < Baqpn < 8q,*
TMP2 |Bay| Bay + TMP3 Bqy + TMP4 = 0
(THIS IS DONE BY USING THE FUNCTION AQUAD)

100

R —

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (SACSH)

NO

Bg:0
o
— 14723
YeS

[Bdssm" Yow / Val

Py

Y

TMP2 = Cag 20" Sd; 1

TMP3 Cns' Q. Sdz
TMP4 = NT*Ba[Cnp‘Cyﬁ AXcG /dp

+lﬁd|(CnBl—Cyp' AXCG/GZ)] . Q.Sdz

SOLVE FOR 8ry WHERE 8r < 81y S3r;:
TMP2 | Bry | 8ry+ TMP3 8r +TMP4: 0
{THIS IS DONE BY USING THE FUNCTION AQUAD)

Tad

RETURN

ey

AFFDL-TR-71-155
PART 1V

PR R Il A

FLOW DIAGRAM (AEROI)

FUNCTION
AERO!

AEROI = C{LOCT)
AERQC2 = C(LOCT 1)

102

bl ol R i A L Rt IR EA A et

AFFDL-TR-71-155

_ PART IV
w..-aé where A = the coefficient of |X|X
‘;}f'ib B = the coefficient of X

:; C = the constant term

8 XLLIM = the Tower 1imit of X

‘: XULIM = the upper T.mit of X

After the function is executived, the value of X will be stored in AQUAD.

27. OPTI - Six-Degree -Of-Freedom Trajectory Program Over a Flat Planet
a. Purpose - This program permits the computation of the six rigid-

body degrees-of-freedom of a flight vehicle where the motion is assumed
to occur over a limited portion of the planet. Under this assumption,
-;”}: the motion is taken to occur within a rectargular coordinate systenm.

" This program of computation has heen provided to aid in such analyses as:
1) Boost-phase dynamics.
2

Pitch-roll-yaw coupling motion investigations.

4

(

(2)

(3) Autopilot response to parametric disturbance.
(4) Landing, approach, and flare-out maneuvers, etc.
(5)

5) Landing gear dynamics.
The effects upon the motion of the body of the following items may also
be accounted for:
(1) Three components of wind velocity and acceleration measured
e in a local-geocentric Cartesian coordinate system.
(2) An arbitrary planetary atmosphere.
(3) The gyrescopic torques impnsed by rotating machinery aboard

the vehicle.

103

AFF
PAR

DL-TR-71-185
T IV

NO

FUNCTION
Aquap

Liaitid biiaie)

FLOW DIAGRAM (AQUAD.)

YES

TMea'-4AC

{ TMP<O. }-lgs

!

NO

(1

™ NO

. YES
x>xu_

F‘“

YES
NO
L X<XyLim

NO
YES()
- X>0.

(~ B+ TMPI)/(-2A)

Al

TMPI = (TMP)

NO

TMP < 0. YES

TMPI =
X={~B+TMPI)/2A

(TMP)é

YES

X:(-B-TMPI})/2A

104

T T S OO UV Y0 ST YVOpemronqum v T TR TTOL A, Wy T Y P o vrT

ey

AFFDL-TR-71-1565
PART v

f_L_Q____p_lQQ_RAM (AQ"U&Q.,
@
* [
! .
J NO
|
X= XyLim
4
NG
v-d— x<xULI|. ’ p— ‘
- iAQUAD'X
YES ‘
Y ves _
CDXLLM
| ~no
(17‘3.)
f“(X” = XLLIM(AIXLLIMI'.'B,"’C
X=XLL1m

105

AFFDL-TR-71-155
PART 1V

(4) The action of an arbitrary* three-plane autopilot upo: the
control deflections of the flight vehicle in response te the measured
motien. The motion may be obtained from a stabilized platform. In this
program the motion is more conveniently printed out in the Cartesian
Coordinates.

b. Linkage
(V) CALL oPTY
Pre-data initialization.
(2) CALL pPT2
Initialization after data is read in and computation for
initial time point.

(3) CALL pPT4

Calculation of equation of motion, and all other variables
that are desired.

(4) CALL @PT6

Time history printout.

(5) CALL @PT7

Update variables that are integrated by the integration routine.

28. LGEARiT - LANDIMG GEAR CALCULATIONS, PART I
a. Purpose - The LGEAR1 subroutine computes the etfects of ground
reaction and landing gzar dynamics on the motion of a landing vehicle.
A maximum of five independent landing gears may be used.
b. Usage - Linkage to LGEART is provided by the following statements:
(1) CALL LGEAR]

Pre-data initialization.

* Currently, only a Pitch-Yaw-Roll sequence is brogrammed, due to
storage limitations.

106

AL I

TR

AFFDL-TR-71-155

PART IV

e

FLOW DIAGRAM (OPTI)

ENTRY

dpT2

INDSDF =2

RETUR@

o

INSERT THE FOLLOWING VARIABLES INT$ UPDATE LIST FOR

INTEGRATION RTN: iy, 1),lp,12,i3,13, M), m), Mo,
ma, !h3, ms, i'h"l."z. l\a,ﬁs,ns, I'l, u, v, v,
w,w%, $,p,4,4q,7, 1, X9, X9, ¥g, Yg,Z9, Z9

l

SUBPROGRAM INITIAL PRINT

CALL LGEARS4
CALL VYPCS4

CALL IFFs4
CALL SACS4

|

INITIALIZE CODE PRINT
WRITE TIME HISTORY TITLE

I

WRITE CODES: t, t5, Xg,
Y9, "v “0Y' w, .pn Q,. , MN.
Va. % Xg,Yg, Zg

107

AFFDL-TR-71-155
PART IV

FLOW DIAGRAM (¢FTI)

(INDRMC=20

22

y

PRINT CODES:
ol' Oy. oz

INDACM
4 =0
PRINT CODES :
AxpiAyp, Azp
prtf————- -

YES

?r
P E:
INDWGT20)-NO | Rm‘: coo
¢

i

-

NO

YES

i

PRINT CODES :
FDC' ch1
Feyr Fex

/

PRINT CODE:
r
INSERT INTO UR
DATE LIST: 8,6,

SUBPROGRAM INITIAL PRINT

CALL LGEARS
CALL VPCSS
CALL TFFSS
CALL SACSS

NO
INDACR:0 PRINT CODES
Re
YES :
NO
PRINT CODES
INDAPC =0
)— a, B
YES T
(iNpaDD=0 NO ForinT CODES
a B
YES T
3 NO
INDGSR =0 | PRINT CODES
vq
YES l
NO oRiNT CODES
(INDFPA =0
—_— ro
YES
- |
r
— NO I'oRINT copEs
INDFPR 20 re
r,o
YES l
y
INDGRT = 0 NO [pRINT CODES
YES 6p. ¥ps ¢

FORCE FINAL PRINT.

EVECT PAGE

108

AFFDL-TR~71-155
PART IV

FLOW DIAGRAM (OPT!)

. ENTRY
4 OPF4
Zg=-hg,0p = & Xq=['5(g dt FORM {,m,n MATRIX
YoR Y. @ =T,y y FROM INTEGRATION
quf'?° dt T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>